
S-76 114 AN EFFICIENT DISTRIBUTED amOiTn FOR NIINU naircdu i
IN SENEMS GRRPWSCU) ILLINOIS UNIY NT Su WPLIED
COMPUTATIOR THEORY GROUP N C NUl JAN S7 CT-73

WCLSSIFIE ONSSSI4-SS--5M I G V~'O2tM

EEEEEEEEEEEEEE
EEEEEEEEEEEEEE

EEEEEEEEEEEE

-1-0

111111 .

'I -1 .

._.t. - - - ° ,- ,-- . o I

January 1987 UILU-ENG-87-2201
- ACT-73

COORDINATED SCIENCE LABORATORY
* College of Engineering

P Applied Computation Theory

- AD-A 176 114

AN EFFICIENT
:4 DISTRIBUTED

ALGORITHM FOR
MAXIMUM MATCHING
IN GENERAL GRAPHS

.-: Michael C. Wu DTIC
. S ELECTE

JAN 2 7 1987c

L E
4; .. t ,

UNI' ERSITY OF !LLINOIS AT URBANA-CINAPAGN

" -pprc4.ed ir 1uhIL Re,.,a-e. i, triliuii.n inhm t;,'d.

Unclassified
CURITV CLASSIFICATION OF TIS PAGE

REPORT DOCUMENTATION PAGE
aREPORT SECURITY CLAS31FICATION ft. RESTRICTIVE MARKINGS

Unclassified None
2SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILASILITY OF REPORT

N/A Approved for public release;
OIECLASSI F ICAT IONIDOWNG RACING SCHEDULE distribution unlimited
N/A

A.PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMVIERS)

~'UILU-ENG-87-2201 ACT-73
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _N/A

NAME OF PERFORMING ORGANIZATION IA. OFFICE SYMBOL 7& NAME Of MONITORING ORGANIZATION

*.Coordinated Science Lab if ' ue fie fNvlRsac
SUniversity of Illinois N/A Ofc fNvlRsac

B.AORIESS (City. State end ZIP Code) 7b. ADDRE[SS (City. Stir dad ZIP Code)

111U. Springfield Avenue
Ubana, Illinois 61801 800 N. Quincy Street

__________________________Arlington, VA 22217

'7A& NAMAE OF FUNOINGISPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
dORGANIZATION Oficiof~ a,*LCabt. I

Naval Research J N/A N01-5KO7
Ar-~ ADDRESS 'City. State wed ZIP code) 10. SOURCE OF FUNDING NOS. _____________

S800 N. Quincy Street PROGRAM PROJECT TASK WORK UNIT

A rlington, VA 22217 EL ME NT NO. NO. No. NO.

T Cude secnhCawiat o,tic f t srnMte Algorithm for NAN/A N/A N/A
~Mai= Matchinar in Gen-ral (r;p3h-
12 P2E RSONAL AUTIIOR(S)

Michael C. Wu
113a, TYPE OF REPOA$1 131. TIME COVERED D4 ATE Of REPORT VYr.. .Vo.* D0'1 15. PAGE COUNT

t Techical IFROM --- __ TO __ _ Januar 1987
.f 1. SUPPLEME04TARY NOTATION

N/A

1? COAIOE 18- SUBJECT TERMS lCoanf a n raail if necea~rY Gold idemefy by bilock nimberi

0 FI GOS US. GR raph, matching, canbinatorial otmzindistributed
algorithm

* -19. ABSTRACT 'Contianue on mvPC7IE lf noes**ry and Adepnfy, by block numbo,,

We present a distributed algorithm fno maximum cardinality matching in general graphs.
~In the worst case the algorithm uses o((Vi 5/2 messages. On trees the algorithm uses only
0 (jV() messages.

2OOISrRIBUTI0N.A'dAiLA8IL;T I F ABSTRACT 21 ABSTRACT SECUAITY LASSIF -CATION

P uPC..ASSIF1G0/UNLIMITED Z. SAME AS Pr, OTIC jSERS Z, Unclassified

22 NAEO ISOSIL NiIA 22b TELEP"CNE NUMBER 22c OFF ICE SYMBOL
Ilue4 Code, NONE

00D FORM 1473, 83 APR OIINF IN' S SSLE.Unclassified

I

AN EFFICIENT DISTRIBUTED ALGORITHM FOR
MAXIMUM MATCHING IN GENERAL GRAPHS

BY

MICHAEL M. WU

B.S.. University of Illinois. 1985

.

THESIS

Submitted in partial fulfillment of the requirements r
for the degree of Master of Science in Electrical Engineering 0

in the Graduate College of the
University of Illinois at Urbana-Champaign. 1987

Accession For

NTIS -RA&

DTIC TAB
Unannounced 0
Justification

_p -

Urbana. Illinois By

Di'stribut iofl/

Availability Codes
!Avail and/or

Dist Special

A..

* *% , % *." .% " , " , % ' - 3

It
ACKNOWLEDGMENTS

First. I would like to thank my advisor Michael Loui. His suggestions. insight, and guidance

were invaluable in the completion of this thesis. I would also like to thank my family for their

support. Finally. I thank my friends for their words of encouragement.

Accession For

NTIS GRA&I
DTIC TAB
Unarnounc ed E]

Justificntio

Distribution/

Availability Codes

:Avail and/or
Dist Special

,r,

cop%1

'.

, 4r'" ii

4, 06

Jiv

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .. 1I
1.1 The Problem .. 1
1.2 Previous Work.. I
1.3 Our Distributed Matching Algorithm.. 3

2. DEFINITIONS... 5
2.1 The Model of Computation ... 5
2.2 Matching Definitions ... 8

P% ~2.3 Sending Messages..I I

3. THE DISTRIBUTED MATCHING ALGORITHM.. 14
3.1 Preprocessing ... 14
3.2 Vertex Description ... 15
3.3 Algorithm Overview ... 16

h3.4 Phase Initialization ... 17

3.5 Search for Bridges.. 18
3.6 Finding Augmenting Paths ... 22
3.7 Alternating Depth First Search .. 26
3.8 Common Vertices and Backtracking... 31
3.9 Increasing the Matching ... 37
3.10 Blossoms... 38

4. ANALYSIS ... 47
4.1 Correctness.. 47
4.2 Message Complexity... 47

4.3 Time Complexity .. 52

5. MAXIMUM MATCHING ON TREES .. 53

6. CONCLUSIONS.. 58

REFERENCES .. 59

IXI

CHAPTER 1

U \INTRODUCTION

1.1 The Problem

Let G . (V, E) be a finite. undirected. connected graph with the set of vertices V and the set

of edges E. A matching M is a subset of E such that no two edges of M are incident on a common

vertex. A maximum matching is a matching of maximum cardinality. jWe presents an efficient dis-

r tributed algorithm for finding a maximum matching in a general graph. _

1.2 Previous Work

&t

The maximum matching problem is a fundamental problem of combinatorial optimization and
a"

has been extensively studied. We summarize some of the previous work done in maximum match-

ing algorithms and distributed algorithms.

1.2.1 Sequential matching algorithms

For maximum matching in bipartite graphs. the algorithm of Hopcroft and Karp (1973) is the

fastest known with a running time of 0(1 V 11/21E I.

A more difficult problem is computing maximum matchings in general graphs. Among the

sequential algorithms that have been proposed for finding maximum matchings in general graphs

are those of Edmonds (1965). Kameda and Munro (1974). Even and Kariv (1975). Gabow (1976).

and Micali and Vazirani (1980). For general graphs. the algorithm of Micali and Vazirani is the

most efficient known with a running time of O(V 1 1/21 E I).

We give an overview of the algorithm of Micali and Vazirani. Peterson (1985) gave an expo-

sition of their algorithm. To find a maximum matching, the algorithm proceeds in phases. During

each phase. ,he algorithm finds a maximal set of vertex disjoint minimum length augmenting paths

and increases the matching along these paths. lopcroft and Karp (1973) proved that ((V :1/-)

'.i

,N.... ...-..-.-_-2vL'..

2

such phases suffice to find a maximum matching. Each phase of the algorithm runs in 0(1 E I)

time. Thus. the running time of the algorithm is 0(1 V 11/2 1E I).

1.2.2 Distributed matching algorithms

Recently. Schieber and Moran (1986) presented a distributed algorithm for finding maximum

matchings in general graphs. No efficient distributed algorithms for the maximum matching prob-

lem was known before. Their algorithm runs in time 0(1 V I log I V I). assuming all the processors

are synchronized, internal processing takes zero time, and each message arrives at its destination

exactly one time unit after it has been sent. The communication complexity of their algorithm

depends upon the model. In the memory restricted model. where the amount of storage at each

vertex is bounded by a linear function of its degree. the communication complexity is

0(1 V 12 I E I) messages. If the amount of storage at each vertex is unrestricted, then the communi-

cation complexity is 0(1 V I I E I log I V I) messages.

Their observation is that. unlike the sequential case. in a distributed network. a search for a

single minimum length augmenting path can be made faster than a search for a maximal set of

minimum length augmenting paths. This is because in the sequential case 0(1 E I) time is needed to

find either one augmenting path or a maximal set of such paths. In the distributed case. however.

the search for augmenting paths can be made in parallel. Thus an augmenting path of length I can

be found in O(l) time. whereas 0(1 V I) time would be required to find a maximal set of such

paths. Using this observation, they showed that 0(1 V I) iterations of finding one minimum length

augmenting path are faster than 0(1 V 11/2) iterations of finding a maximal set of such augmenting

paths.

1.2.3 A technique for designing distributed algorithms

Awerbuch (19h5a) presented a technique called a synchronizer for designing efficient distri-

buted algorithms in asynchronous networks. The synchronizer allows algorithms lor asnchro-

nous networks to be designed as if they were to be executed on a synchronous net\xork. The

,eN

3

motivation behind using a synchronizer is that asynchronous algorithms often have time or com-

munication complexities much worse than their corresponding synchronous algorithms. Thus. it

the additional complexity introduced by the synchronizer is small as compared with the complex-

ity of the synchronous algorithm, then an efficient distributed algorithm can be obtained oy adding

a synchronizer to the synchronous algorithm.

Awerbuch demonstrated the power of the synchronizer on distributed algorithms for breadth

first search and maximum flow. For breadth first search, a previous distributed algorithm by

Gallgher (1982) has a communica" -nplexity of IV I IE I messages and a time complexity of

I V I. The distributed algor" .ained by using a synchronizer with a parallel breadth first

search algorithm by Eckstein (1977) improved the communication complexity to k I V 1- messages.

log21lV I
where k is a parameter. 2 -< k -< I V I. The time complexity of the algorithm is I V 1 102

log~k

For maximum flow. Segall (1982) presented an algorithm with a message complexity of

S I V IIE 12 and a time complexity of I V 12 E . The algorithm obtained by using a synchronizer

with the parallel maximum flow algorithm by Shiloach and Vishkin (1982) has a message complex-

itvofk IV 13anda timecomplexityof IV 12 log2 1V I

log 2k

1.3 Our Distributed Matching Algorithm

, '

in designing our distributed matching algorithm. wme mainly concerned with the communi-

,P, cation complexity. The maximum number of message transmissions determines the efficiency of the

algorithm. We- concentrate~on minimizing the number of messages for two reasons. First. in an

actual distributed system. the communication time would likely be much greater than the process-

ing time. Second, in commercial computer networks, common carriers often charge by the number

of packets or bits rather than by time.

We designed our distributed matching algorithm by integrating Awerhuch's synchronizer

technique %kith the sequential matching algorithm of \licali and Vazirani. We could not directly

k,

P~~~.. .*. b
* . N .10. I

.

mp

4
5'"

make a synchronized implementation of the algorithm of Micali and Vazirani. however. because of

differences in the characteristics of distributed and shared-memory networks. Also, we

significantly improved the efficiency of the distributed algorithm by modifying the straightforward

' implementation of certain procedures of the sequential algorithm. The communication complexity

of our algorithm is O(I V 15/2) messages with bounded storage at each vertex. Since the graph is

connected. I E I - I V I - 1. Thus. the communication complexity of our algorithm is better than

*" that of the algorithm of Schieber and Moran. Our algorithm, however, searches for augmenting '

paths sequentially. Thus. the time complexity of our algorithm can be as large as the message com-

plexity. 0(1 V 13/2).

[5 4'

A 4s

I.

U

'.5
9

S. -A-... %S* * ... -

g
5

CHAPTER 2

DEFINITIONS

2.1 The Model of Computation

We present our model of distributed computation. We first give a general description of the

model and then give some precise definitions.

21.1 Overview1 q

The distributed computation model is an asynchronous network described by an undirected,

finite, connected graph G = (V, E) with the set of vertices V and the set of edges E. The set of

*-? vertices V represents the processors of the network, and the set of edges E represents the bidirec-

-" tional communication links between the processors. Thus. the network topology determines the

graph. In our discussion, we will refer to the processors as vertices and the links as edges. An edge

(x. y) means that there is a link connecting processors x and y.

A vertex x is a neighbor of vertex y if there is an edge (x , y) in E. Each vertex has a dis-

tinct identity and knows the identities of its neighbors. Neighboring vertices can send messages to

each other along the same edge in both directions simultaneously. A vertex can send messages to

• more than one neighbor simultaneously but can receive messages only one at a time. The edges are

assumed to be error free so messages arrive in sequence without error after an unpredictable but

finite delay.

"' Local computations are assumed to require negligible time. We make this assumption because

in an actual system. the communication time would likely be much greater than the processing

time. Each vertex receives messages from its neighbors. performs local computations, and sends

messages to its neighbors.

The communication complexity o a distributed algorithm Is the mdximum posiltle number

A messages all vertices of the distributed nemx ork may send during the execution of the algorithm.,

4., * * *A

6

The time complexity of the algorithm is the maximum possible execution time of the algorithm

assuming a message sent by the source requires exactly one time unit to arrive at its destination.

This model appears in Awerbuch (1985a), Schieber and Moran (1986). and others. -

We use the memory restricted model of Schieber and Moran (1986). where the amount of

storage at each vertex is bounded by a linear function of its degree. The length of each message is

proportional to log IV I .

Note that if both the message length and the amount of storage at each vertex are unres-

tricted. then after a spanning tree is constructed. only 0(1 V I) messages are needed to find a max-

N imum matching. Since the amount of storage at each vertex is unrestricted, we send all the infor-

mation about the network topology to the root. Then the root computes a maximum matching and

sends the result to the rest of the network.

To convey the network topology to the root, each vertex sends a message to its parent along

the spanning tree. A vertex v sends a message which gives the neighbors of v and the neighbors of

* each of the descendants of i'.After the root receives a message from each of its children in the

spinning tree, the root knows the topology of the network and computes a maximum matching.

Then the root sends a message which gives the solution to each of its children in the spanning tree.

A vertex receiving the solution sends it its children in the spanning tree.

If the amount of storage at each vertex is unrestricted, but the message length is restricted.,

then after a spanning tree is constructed. ((V I I E I) messages are needed to find a maximum 7-

matching. Again we send all the information about the network topology to thle root along the

V spanning tree, and the root computes the maximum matching. The method is the same as before

except that each message gives the information about only one edge. i.e.. one pair of neighbors.

Since there are I E I edges. there are 0(1 E I) messages. Since the vertices send the messages along

the spanning tree, the total number of messages is 0(1 V I EF I).This justifies restricting both the P

message length and thle amount of storage at each vertex.

N%

2.1.2 Definitions

lar We now give a precise definition of the distributed computation model. Our definition is simi-

lar to the one presented in Gafni et al (1984). A distributed system is a triple (PR(XZS. LINKS,

MSGS). where

PROCS is a finite set of vertices

rINKS C PROCS x PR()CS is a set of edges

MSGS is a set of messages.

An event is the transmission or arrival of a message at a vertex x . An event is specified by

giving the vertex, the edge, the message, and whether the event is a transmission or arrival.

Each vertex has a current state. The state of a vertex x is specified by a sequence of zero or

. more events at x. A state of a vertex x has the form

<e e, . • e, >.

where each event e, is an arrival of a message at x or the transmission of a message by x. Note

- that the state of a vertex does not depend upon the time between events.

Let s be the current state of x. When an event e occurs at v . x makes a transition from the

current state .5 to a new state by concatenating e onto the end of ' . l.et STATES be the set of

* '"4 states.

A configuration is a function C that specifies a state for each vertex and the messages on each

edge. Each edge has either zero or one message in transit in each direction. If all vertices have the

empty state E and no messages are in transit, then the configuration is initial.

A distributed algorithm is a function
'%"

A: STATES- (NIS;S x F) U iol

that rijeciies what a \.ertex does in ,am. state. II i \ertex .r i' in state . . then x either ,ends a mes-

sage to another '.ertex as spe !tied h\ .I lZ s) E \I(;S x 1: and han es tate or does noth in

~~~~~.._.-. ... .. ... .-. °--,,-.................. ..................-.... :.-., ...



8

(.4 (s) = 0).

An execution of an algorithm A is a finite sequence of configurations

starting from an initial configuration Co, such that for all i, C, +I is obtained from Ci by either the

transmission or arrival of a message at some vertex x. An execution terminates in a final
a--

configuration C1 when every vertex of the system is in a state in which it does nothing and no

messages are in transit.

The message complexity of an algorithm A is a function f( I V I. I E I ) that gives the max-
imum number of messages sent in executions of A on a distributed system with I V I vertices and

I E I edges. The time complexity of an algorithm A is a function g( I V I. I E I ) that gives the max- -

imum amount of time required for executions of A on a distributed system with I V I vertices and

IF I edges assuming that each message arrives at its destination exactly one time unit after it has

* been sent.

2.2 Matching Definitions

Let M be a matching in G. The following terms are defined for a fixed matching M. An edge

e is matched if e E M and free if e f M. A vertex v is matched if a matched edge is incident on

v and exposed if no matched edges are incident on v. If the edge (v, w ) is matched, then v is the

mate of w and vice versa.

In Figure 1. straight lines represent the free edges and dotted lines the matched edges. The

free edges are (A. C). (B. C). (D. E). and (D. F). The edge (C, D) is a matched edge. Vertices A. B.

%. E. and F are exposed and vertices C and D are matched. Thus C is the mate of D and vice versa.

An ilternating path is a path (v . v 2. ) whose edges (v,,v2 ). (v'v). are alternately

in M and not in kl An augntning path is an alternating path ,vhose first and last vertices are

, exposed. In Figure 1, the path (A. C. 1), F) is an augmenting path. Two paths are dhiimt if the.

,F e



7% ~ ~ WfUXJ -AW! X7E K' -. .. VV. - -A

i, . _. ~~~ ~~~~~~~~ ...,........i. D t- I " -- . .1.1,. ,. .3 i 'l

A F

-- °

Figure 1. A Matching M,

have no common vertices.

The evenlevel of a vertex v is the length of the minimum even length alternating path leading

from %, to an exposed vertex, if any. and infinite otherwise. The oddlevel of a vertex v is the length

of the minimum odd length alternating path leading from v to an exposed vertex, if any. and

infinite otherwise. The level of a vertex %, is the smaller of evenlevel (v) and oddlevel (v). Thus

level (v) is the length of the minimum length alternating path leading from v to an exposed ver-

tex. A vertex v is outer if level (v) is even and inner if level (v) is odd. If v is outer, then the

otherlevel of v is oddlevel (v ) and vice versa.

A blosom is a circuit of odd length that is maximally matched. A blossom with length 2k +

1 has k matched edges. Figure 2 contains the blossom (C. D. E. F. G).

An edge (v. w ) is a bridge if either both evenlevel (v) and evenlevel (w) are finite or both

oddlevel (') and oddlevel (w) are finite. The discovery of a bridge signifies the presence of either

an augmenting path or a blossom. The tenacity of a bridge(v v) = min levenlevel (v) -

e~enle,.el (w ). oddlevel (v oddlevel (w )I + 1. If there are no blossoms. then the tenacity of

bridge A' , ) is the length of the minimum length augmenting path containing bridge v. w

%



10

4?

E F H

%%

S.-

B K

-. 5.A L

Figure 2. A Blossom

A vertex u is an anomaly of a vertex v if v is inner. u is outer. u and vare neighbors. and

evenlevel (u) > oddlevel (v ). In Figure 2. H is an anomnaly of G since evenlevel (11) = 4 and

oddlevel (G) = 3.

We present two theorems about augmenting paths.

Theorem 2.1: Let P be the edges of an augmenting path with respect to a matching M in a graph

G. Let M' = M + P be the matching with the set of edges e such that either e E M and e 9 P or

e 9 M and e E P. Then M isa matching of cardinality IM I + 1.

The following theorem is due to Berge (1957):

Berge's Theorem: A matching M in a graph G is maximum if and only if there is no augmenting

path in G with respect to A.

4..*



Papadimitriou and Steiglitz (1982) gave clear proofs of these theorems.

We define increasing the matching along P to be the process of converting the matching M

into the matching M *as follows. We reverse the matching of an edge by making a matched edge

free, and vice versa. The matching M is converted into the matching M *by reversing the matching

of the edges in P. In Figure 3a (Peterson. 1985) is a matching M. The result of increasing the

matching along the augmenting path (C. D, E. F) is the matching M' shown in Figure 3b.

2.3 Sending Messages

We give some definitions for sending messages. When a vertex v forwards a message MSG to

a vertex w . v sends a message MSG to w identical to the one that v received. We now describe

C C4

A D G

BE HEH

F

(a) (b)

Figure 3. Increasing the M'atching

% LA A



12

two message passing paradigms.

Suppose we have a spanning tree T of the network. A broadcast is a communication pattern

in which the root of T sends a message MSG and all vertices of T eventually receive MSG. To per-

form the broadcast, each vertex v receiving a message MSG forwards MSG to each of v s spanning

tree children. The broadcast is initiated by the root and terminates at the leaves of T.

A convergecast is a communication pattern in which the root receives a message from a child

in T only if all descendants of the child have sent convergecast messages. A convergecast can be -

thought of as being the opposite of a broadcast. A vertex v sends a convergecast message only after

all descendants of v have sent their convergecast messages. The messages in the convergecast. how-

ever. need not be the same. To perform the convergecast. a vertex v sends a convergecast message

to its parent in T after v has received a convergecast message from each of its children in T. The

44 convergecast begins at the leaves of T, which have no children, and terminates at the root.

Suppose we have the spanning tree shown in Figure 4. To perform a broadcast of a message

MSG. vertex A sends message MSG to vertices B and C. B forwards MSG to D and C forwards

MSG to E. F. and G. To perform a convergecast. vertices D. E. F, and G send convergecast messages ',

aA

Bt C

Figure 4. A Spanning Tree

'P

% %



13

to their parents in T. B sends a convergecast message to A after receiving a convergecast message

from its child D. and C sends a convergecast message to A after receiving convergecast messages

from its children E. F. and G.

%.2

.V.

!

,II



14

e.j
CHAPTER 3

THE DISTRIBUTED MATCHING ALGORITHM

3.1 Preprocessing

To implement Awerbuch's synchronizer technique, we need to construct a synchronization -'

network. Since the vertices synchronize by sending messages to each other, we minimize the

number of messages by using a spanning tree for the synchronization network. We select the root

of the spanning tree to be the leader of the network.

The leader synchronizes the various steps of the algorithm via broadcasts and convergecasts.

The leader begins a step by performing a broadcast and recognizes the end of the step through a

convergecast.

In our algorithm, we are not concerned about the construction of the synchronization tree.

Thus we will assume that a spanning tree ST of the network has been constructed and the root

selected to be the leader of the network. The ST-parent of a vertex v is the parent of v in the

spanning tree ST. Similarly. the ST-children of v are the children of v in ST and the ST-

descendants of v are the descendants of v in ST.

There are distributed algorithms for constructing spanning trees. Gallagher. Ilumblet. and

Spira (1983) presented a distributed algorithm for constructing minimum weight spanning trees

requiring at most 5 1 V I log I V I + 21 E : messages. Note that we do not need the minimum

weight. Their algorithm maintains a distinguished edge called the core to initiate the cycles ot the

algorithm. When the spanning tree is found. we can choose a vertex of the core to he the leader.

Awerbuch (1985b) presented a distributed algorithm for constructing a depth first search

spanning tree which uses at most 4 IF ! messages. The algorithm begins at the root and adds ver-

tices to the tree until all the vertices have heen added.

..5

3.....-



1 15

'w 3.2. Vertex Description

We give a description of the vertices representing the processors of the network. We use the

memory'restricted model of Schieber and Moran (1986) where the amount of storage at each vertex

is bounded by a linear function of its degree. We allow a vertex a fixed amount of storage for each

incident edge. This is a reasonable assumption since a vertex with a larger number of edges

requires a proportionately larger amount of storage for variables and buffers. The vertices have

unique identities but are otherwise identical. Every vertex executes the same algorithm with the

exception that the leader must also synchronize the remaining vertices. The algorithm at each ver-

* tex can easily be made the same. however, if we include a test for the leader.

The following is a description of the local variables maintained by each vertex 1. The func-

*: tions of some of the variables will be further explained as they are used.
evenlevel (v) evenlevel of v

oddlevel () oddlevel of v
level (v) minimum (evenlevel (v ). oddlevel (v))
neighbirs (v) the neighbors of v
erased (v) true if v is erased

, activeneighbors (v) the neighbors of v that are not erased
predecessors (v) the predecessors of

% visited (v) the bridge vertex that last visited v during the phase
mate (v) if v is matched. the mate of v
bridges (v) the vertices that form a bridge with v

, anomalies (v) the anomalies of v
blossom (v) if v belongs to a blossom, the base of the blossom

stparent (v) the ST-parent of v
'. stchildren (v) the ST-children of v

-V dfsparent (v) the depth first search parent of v

'-". dfschild (v) the depth first search child of '

dcvchild (v) the child of v along the path to the deepest common vertex
counter (v) message counter

S. barrier (v) used to prevent redundant backtracking beyond v
% " altpath (v) true if v is on an aliernating path to an exposed vertex

: ,: We assume that neighbors (v). stparent (v). and stchildren (v) are set during preprocessing.

Their values remain the same throughout the algorithm.

% ,°

9.::'

.. . . . .. . . . . . . . .. . . . . . . . . . . -.
,S.

/- S. t" . S, S r , ' :. €e I ,.,. .," ..X.,,,.,, ,..-. , , ; ,:- , :,,,'i -'d. ,.f_' S . - - ", _, - -', " " '



16

3.3 Algorithm Overview

We give a high-level overview of the algorithm. To find a maximum matching. the algorithm

proceeds in phases. During each pl-ase. the algorithm finds a maximal set of disjoint minimum

length augmenting paths and increases the matching along those paths. Note that during each phase

we need to find only a maximal set of such paths. not a maximum set. Hopcroft and Karp (1973)

* proved that O( I V I i12) such phases suffice to find a maximum matching. The phases are numbered

0,.1.2.....

Next. we describe the execution of one phase of the algorithm. The objective of each phase is

to find a maximal set of minimum length augmenting paths. To find augmenting paths. the algo-

rithm performs breadth first search from exposed vertices to find bridges. If any bridges are found.

the algorithm tries to find augmenting paths containing each bridge one at a time. The algorithm

increases the matching as each augmenting path is found. If any augmenting paths are found dur-

ing the current phase. then a maximal set of minimum length augmenting paths is found. and the

algorithm proceeds to the next phase. If no augmenting paths are found. then the matching is max-

imum (Berge. 1957).

To find bridges, the algorithm performs breadth first search from exposed vertices. The search

proceeds one level at a time. The search levels are numbered 0. 1.2 ..... The initial search level of

each phase is 0. When the current search level is i . a search is made for all bridges at level i. If a

bridge is discovered, then the algorithm performs depth first search from the bridge vertices to find

an augmenting path. If no augmenting paths containing bridges at the current search level are

found, then the breadth first search proceeds to the next level. If an augmenting path is found.

then the algorithm begins a new phase.

To find an augmenting path containing a bridge, the algorithm performs depth first search

from the bridge vertices of the bridge to find alternating paths to exposed vertices. The algorithm

searches for augmenting paths one at a time. If the algorithm finds tmo disjoint alternating paths

leading from the .ertices of a bridge to exposed ,ertices. then the alorithm increases the matchn g

.. A5



71

" . along the augmenting path consisting of the two alternating paths and the bridge. To increase the

matching. the algorithm reverses the matching of the edges along the augmenting path. If two dis-

joint alternating paths from the bridge vertices to exposed vertices cannot be found. then there is

no augmenting path. There may. however, be a blossom.

The algorithm continues to increase the matching until a maximum matching is obtained. If

the matching is maximum. then there are no augmenting paths (Berge. 1957). The algorithm recog-

* "nizes that the matching is maximum and halts when the breadth first search for bridges reaches a

level i such that no vertices are at level i.

' We now describe the matching algorithm in detail. We examine how the algorithm proceeds

during a phase p.

3.4 Phase Initialization

- The leader L starts a phase p by broadcasting a STARTPHASE (p) message. When a vertex

a v receives a STARTPHASE (p) message, v forwards the message to its ST-children and initializes

its local variables as follows:

evenlevel (v) := 0o
-A'. oddlevel ():= 00

level (v) := 00
predecessors (v) :=0
activeneighbors (v) := neighbors (v

"" anomalies ,) :=0
visited (v) nil

erased (v) := false
-. ".bridges (v) =

barrier (v := nil
altpath 6') := false
dfsparent k,) := nil
dfschild (v) := nil
dcvchild (v) := nil
if phase p =0 then mate (v) := nil
if v is exposed then evenlevel (v) := 0. level () := 0

During the algorithm, once a vertex v become. matched. v remains matched throughout trw

remainder of the algorithm. But v may he matched \x ith a different \ertex during ,tiloerent rht-e',

J. ".A
p. °

*o' '



I -LM 1-T AT I - - - -

18

Since the augmenting paths found during each phase are disjoint, the mate of a vertex changes at

most once per phase.

Vertex v convergecasts a READY message after v has initialized its variables and received a

READY message from each of its ST-children. The phase initialization is synchronized via the

STARTPHASE and READY messages.

3.5 Search for Bridges

We describe the search for bridges at level i. For now we consider the case where there are

no blossoms. This will simplify the discussion. We examine the general case with blossoms in Sec-

tion 3.10.

To search for bridges, the algorithm performs breadth first search from exposed vertices. To

perform the search, after L receives a READY message from each of its ST-children. L sets the

current search level i and broadcasts a START13FS (i ) message. The initial search level for each

phase is 0. The STARTBFS (i ) message signals vertices at level i to extend breadth first search to

level i - 1. Thus when i = 0. exposed vertices z start breadth first search since they are the only

ones with level (z) = 0. During the first phase, all vertices are exposed.

A vertex v at level i receiving a STARTBFS (i ) message searches for bridges at level i. Ver-

tex v continues the search along alternating paths to those vertices that are unsearched and

unerased. Let u be the vertices in activeneighbors () - predecessors (v ). Then the vertices u are

unsearched and unerased. To continue the search along an alternating path. if i is even. then v

,ends BRIDGESEARCH 6( . i - I) messages to those vertices u such that the edge (v . u ) is free. If

i is odd. then v sends BRIDGESFARCII (%. i + 1) messages to those vertices u such that the edge

(u . v ) is matched. Vertex v sets counter (v ) to the number of I1RIDGf SEARCHl messages it sent.

.\ %ertex u receiving a BRIT)(;SARCl (v . j ) message. where j is i + I. proceeds as fol-

Ilc s. If j is even and eenlevel (u oo. then u -ets e\enle\el iu 1 :- j and adds v lo predeces-

se r, (u . Similarlv. it J is odd and ,ddleel (u) oo. then u ,ets oddle\el (u i and adds' io

-eAk

° '-, .. , ,,-, ,,/..-,-.- .'.'.,-.-,-..-. ..............- .....'......"....-. --.....-...-.....- ,.......
-'"- - -"',A. .. '.j,. "-'t ;" ,,,-",.,, ,.,, ,,. " , ., - -.. ',... - . .-' ." -.. . .- .. . . .•• . . ..- . ..,. .- . ' _.. . : ,,-

_ - _ , : - - " " " -m d t-.l d ,, .~ebd l ii . . . . . ..ll l bndm mm m m .,,, -



19

predecessors (u). If necessary, u updates level (u). The predecessors of u are the vertices v at

level (u) - 1.

If j is odd and j > oddlevel (u ). then v is an anomaly of u since evenlevel (v) >

oddlevel (u ) + 1. Thus u adds v to anomalies (u).

Note that if vertex u receives more than one BRIDGESEARCH message at the current search

level, then all the BRIDGESEARCH messages will have the same j. Also note that the search for

bridges discovers the vertices at the next search level. Thus if no augmenting path is discovered at

the current search level i, then the vertices at search level i + I will already have been identified.

and L need only broadcast a STARTBFS (i + 1) message to continue with the next level of the

breadth first search.

After u receives the BRIDGESEARCH (,. j) message. u determines the edge (u. ) is a

*i bridge if either j is odd and evenlevel (u) is finite or if j is even and oddlevel (u) is finite. In the

case without blossoms, if the edge (u. v ) is a bridge, then level (u)= j - I since level (W) "

level (v). Note that for each pair of neighbors u and v that form a bridge, each vertex sends a

BRIDGESEARCH message to the other.

If u determines that the edge (u, v ) is a bridge, then u adds v to bridges (u). Vertex u

deletes v from predecessors u ) since v is at the same level as u. Then u sends a

Z. BRIDGERIPLY (u bridge) message to v to inform v that the edge u. v) is a bridge. If u deter-

mines that the edge (u. v ) is not a bridge, then u sends a IIRIDGEREPLY (u . nobridge) message to

J. Vertex u sends a BRIIG)(EREPLY message to each neighbor from which it received a

BRIDGESEARCIt message.

A vertex v receiving a BRII)GEREPLY (u . bridge) message adds u to bridges 6') and decre-

ments counter (v) by 1. A vertex v receiving a BRIDGEREPLY (u . nobridge) message just decre-

ments counter(v). The variable counter (v ) maintains the number of neighbors to which v sent

BRII)C;SI. XR('l! messages that haye not returned IRIlI);IRPILY messages. Vertex ' continues to

recei,.e BRII)(;ERt-PI.Y messages until counter v ) = 0.



20

All vertices v perform a convergecast to inform the leader whether any bridges were
n

discovered. For the convergecast. each vertex sends one of two types of messages. A vertex .

sends a BRIDGES (v ) message if either v or some ST-descendant of v discovered a bridge. Other-

wise. v sends a NOBRIDGES (v . atlevel) message, where the boolean atlevel is used to inform the "

leader whether the algorithm should halt. If v or some ST-descendant of v is at level i . then

atlevel = true.
'.4

We describe the convergecast and the computation of atlevel for vertex v• After v has

received a BRIDGES or NOBRIDGES message from each of its ST-children and counter (v) = 0. v

e

sends a BRIDGES or NOBRIDGES message as follows. If v received a BRIDGES message from some

ST-child of v or if' v discovered a bridge, then v sends a BRIDGES (') message to stparent (v).

Otherwise. v sends a NOBRIDG(ES (v. atlevel) message to stparent (v ). The value of atlevel is set

as follows. If level (v) = i or it v received a NOIRIDGS message with atlevel = true from some

.ST-child of v . then .sets atlevel := true. Otherwise. v sets atlevel := false.

The convergecast of the BRIIX;ES and N()BRIDGES messages synchronizes the end of the

* search for bridges at the current search level. When L has received replies from all of its ST-

children. 1. know.s whether there were any vertices at the current ,:earch level and whether any

bridges were discoered.

If L received a IBRIIX;FS message. then the algorithm searches for augmenting paths contain-

ing the bridges found at level i We describe how the algorithm finds augmenting paths in Section

3.6. It an augmenting path is found. then 1. begins a new phase by incrementing the phase

p := p + I and broadcasting a S.-\RTPIIASII (p ) message. If no augmenting paths are found, then

L continues the search for bridges by incrementing the search level i i - I and broadcasting a

STARTI3FS (i ) message.

If L did not receive .1 BRII)GES message. but did receive a \()I3NII)(I message with atl'cxc

true. then I. inrements the earch le,. -I and ontimues the hreadth tirst search.

. . ,- . .# - - . #" .r ." " .•, ' , • ,J " . " • " " : " ' ,4" " , " " J " " , " ' " 4



21

If L receives only NOBRIDGES messages with atlevel = false, and level (L) < i. then the

algorithm halts since there are no vertices at level i.

Note that when an anomaly %' sends a BRIDGESFARCII message to a vertex u. there is the

I possibility that the BRIDGFSEARCII message from v arrives at u after u has already sent u's

BRIDGES or NOBRIDIGI-S message. This occurs if u receives replies from all of its ST-children

before the BRIDGESEARCtt message from v arrives. But since u sends a

':" ".BRIIXEREPLY (u . nobridges) message to u. the BRIDGES or NOIBRIDGES message u sends to

stparent (u ) is the same message u would have sent if u had not received a BRIDGESEARCH mes-

sage from v. Note that u does not send a BRIDGESEARCH message to v since from u s point of

view. the edge (u . v ) is not along an alternating path.

Although u may receive a BRIDGESEARCII message from v after u has sent u "s BRIDGES or

NOBRIDGL.S message, the algorithm remains synchronized. Since the leader cannot continue on to

the next step of the algorithm until all vertices have convergecasted a BRIIXES or NOIBRIDGES

message. v convergecasts a BRIDGES or NOBRIDGES message only after v receives a BRIDGERE-

• .PLY message from u.

Now we give an example of searching for bridges. Suppose the algorithm is searching for

bridges in the part of the network shown in Figure 5. When L broadcasts a STARTBFS (0) mes-

sage. the exposed vertices C. F. and K begin breadth first search. C sends a BRIDGESEARCHI (C. 1)

message to B, F sends BRII)G'SEARCII (F. 1) messages to F and 11, and K sends a BRII)GESIARCII

(K. I) message to J. After the search for bridges at level I has been completed. the vertices have

the (evenlevel. oddlevel) values shown. When L broadcasts a S'ARTBFS (2) message. A sends a

BRIDGESEARCII (A. 3) message to D and D sends a BRIDGESLARCII (D. 3) message to A. A and

D determine that the edge (A. D) is a bridge. G and I find that the edge (G. 1) is a bridge. Thus A.

I). (. and I convergecast BRIDGES messages and the leader knows that a bridge has been discovered

at earch le'.el 2.



|U

22

B E HJ
00.1 00.1 00.1 00,1

C F K

Figure 5. Search for Bridges

3.6 Finding Augmenting Paths

We give an overview of the process of finding augmenting paths. If any bridges are

discovered at the current search level, then the algorithm attempts to find augmenting paths con-

taining those bridges. The algorithm searches for augmenting paths one at a time. This ensures

that the augmenting paths discovered are disjoint.

To search for augmenting paths one at a time. we consider the vertices of the network in

depth first search order on the spanning tree. For our discussion, assume that we order the ST-

children of each vertex from left to right with respect to the root of the spanning tree. This

simplifies the description of finding augmenting paths. In an actual implementation. the ST-

children may be ordered by their identities.

For each bridge discovered at the current search level, the algorithm performs depth first

search from the bridge vertices to find alternating paths to exposed vertices. We describe how to

find an alternating path I rom a bridge vertex to an exposed vertex in Section 3.7. if the alorithrn.

INi

e ",
'1



23

is able to find two disjoint alternating paths to exposed vertices, then the algorithm finds an aug-

menting path formed by the two alternating paths and the bridge. The algorithm increases the

O-d matching along the augmenting path and erases the vertices path. Since erased vertices are not con-

sidered during the search for alternating paths to exposed vertices, erasing the vertices of an aug-

rOn menting path ensures the disjointness of subsequent augmenting paths.

Before we describe the execution of the algorithm, we give a definition. If v is a vertex of a

bridge (v. w ). then v owns the bridge (v. w ). Thus each bridge is owned by two vertices

The algorithm considers the vertices of the network in depth first search order from left to

right To begin the process of finding augmenting paths. L sends a STARTALGMENT mess.age to

-" "L 's leftmost ST-child A vertex u receiving a STARTAUGMENT message forwards the message to

u s lettmost ST-child. it one exists. The STARTALGMENT message is forwarded until it reaches a

,ertex 1,, that has no ST-children. i.e.. a leaf

When 1,, receives the S'.-.RTAL(;MENT message and finds that it has no ST-children. 1,,

t*" knows the algorithm is trying to find an augmenting path containing a bridge owned by 1,,

* ~.if 1,, is erased, then 1,, sends a NOTAUGMENTED message to stparent (1). If 1, is not erased.

.- p then 1,, checks bridges (U,,) for the bridges that it found. If 1,, did not find any bridges, then 1,

- sends a NOTAUGMENTED message to stparent (1). If 1. found at least one bridge, then 1, arbi-

trarilv chooses a bridge formed with a vertex r,, in bridges (1). Vertex ri is the buddy of 1,. and

vice versa. Then 1,, tries to find an alternating path to an exposed vertex. We describe how a

bridge vertex searches for an alternating path to an exposed vertex in 'Section 3.7.

If 1,, is unable to find an alternating path to an exposed vertex. then there is no augmenting

path containing 1,. Vertex 1,, should not be further considered when searching for other augment-

ing paths during the current phase. Thus 1,, sets erased (1,,) true. Then L,, sends a NOTAUG-

* \II;NTFI') message to stparent (l,,).

II I,, is ahle to find an alternating path ' !o an exposed . then 1- . nal'. N I , . i.,r.h I r

*... an exposed .ertex !i ,sending r,, 1 ,) mes,ae.

"t -P_ -. ? "_ *. -. -r- % -,t it -



sU

24

For now we will assume that 1 and r,, do not encounter any common vertices when searching

for alternating paths leading to exposed vertices. If the search for an alternating path encounters

an erased vertex, then the search must backtrack and try to find a different path. All vertices are

"unerased" at the start of each phase. We consider common vertices and backtracking in Section

3.8.

When r,, receives the GO (1) message. rt, knows that 1 , is its buddy and that 1, found an

alternating path to an exposed vertex. Vertex r,, then performs depth first search to find an

exposed vertex.

If r. is able to find an alternating path P, to an exposed vertex disjoint from P,. then there is

an augmenting path P, . (1,,. r,), P,. Thus ro sends a SUCCESS message to 10. After 10 and r,

increase the matching along the augmenting path. 1, sends an AUGMENTED message to

stparent (I,,). We explain how the bridge vertices increase the matching along an augmenting path

in Section 3.9.

If r,, is unable to find an alternating path to an exposed vertex, then there is no augmenting

path containing r. Thus r,, sets erased (r1,) := true and sends an ERASED message to 1,. When l,

receives the ERASEI) message. L, deletes r, from bridges (1,,). Then 1,, selects some other vertex r€.V

from bridges (1,,) and sends a GO (1,,) message to r 1. Vertex 1,, continues selecting buddies from

bridges (1) until either some buddy is successful or all of them fail. If some buddy of 1,, is suc-

cessful, then there is an augmenting path. If all buddies of 1, fail. then !0 sets erased (1,) true

and sends a NOTAUGMENTED message to stparent (1,).

We have described the process of finding an augmenting path for 1,. Now we describe the

process for a general vertex x.

If x receives a STARTAUGMENT message. then x forwards the STARTAUGMENT message

to its let tmost ST-child. if one exists. If x receives an ALGMENTEI) or \()TAGL(\ NTEI) mes-

sage from a ST-child of x . then Y sends a S.AR'I'AL (MINT niessag-e to x 's next ST-child from

the left. if one exist.. Alter- has sent a STARI'AL;IFNT message and received an

%.,

.. *



25

AUGMENTED or NOTAUGMENTED reply from each of x's ST-children. if x is not erased and x

found bridges. then x tries to find an alternating path to an exposed vertex. If x is able to find one.

then x sends a GO (x) message to the buddies of x in bridges (x ) one at a time until either some

buddy returns a SUCCESS message or all of them return ERASED messages.

* If x receives a SUCCESS message, then x and x's buddy increase the matching along the aug-

" menting path. If x was unable to find an augmenting path. then x sets erased (x) true.

S.-.- Then x sends an AUGMENTED or NOTAUGMENTED message to its ST-parent as follows. If

either x or some ST-descendant of x found an augmenting path. then x sends an AUGMENTED

message. Otherwise x sends a NOTAUGMENTED message. Thus if x found an augmenting path

or some ST-child of x returned an AUGMENTED message. then x sends an AUGMENTED message
t5 to stparent (x). Otherwise. x sends a NOTAUGMENTED message to stparent (x).

Observe that during each phase x can belong to at most one augmenting path. Thus. once the

algorithm finds an augmenting path containing x . x is erased and the bridges owned by x need not

be considered.

The sending of the AUGMENTED and NOTAUGMENTED messages forms a convergecast that

*I synchronizes the end of the search for augmenting paths containing the bridges found at the current

search level. The convergecast also informs the leader whether there was an augmentation. If L

receives an AUGMENTED message. then an augmentation occurred. Thus L increments the phase

p :=p + I and begins a new phase by broadcasting a STARTPHASE (p) message. If L receives

. only N(T.AU(MI'NTEID messages, then no augmentations occurred. In that case L increments the

search level i := i + 1 and continues the search for bridges at the next level by broadcasting a

STARTBFS (i ) message.

We point out two modifications that could be made to reduce the number of messages. These

modifications, however, do not reduce the overall message complexity of the algorithm.

One way to reduce the number of messages is to send S'I.\R0I'AL( \lINT messages oni to

"*, ' those vertices that sent [3RII)GIS messages. Vertices that sent \(IIRII)GI.S;messages and their ST-

i'% %

2% " ° . . . . €. • . " , , . % , . ° . , . . • • . o • ° ° % % % " ° . i '



26

descendants do not need to be sent STARTAUGMENT messages since they did not find any bridges.

We also note that L does not need to initiate a search for an alternating path. i.e.. L searches 7.-

for an alternating path only if L receives a GO message. If there was an augmenting path contain-

ing I. then L is erased. If L is not erased, then there is no augmenting path containing L. This is -

because each buddy of L must have been either ontained in an augmenting or unable to find an

alternating path to an exposed vertex, and thus erased. Otherwise some buddy of L would have

sent a GO message to L.-

3.7 Alternating Depth First Search .

In the sequential algorithm of Micali and Vazirani. the bridge vertices l, and ro of a bridge

(l(,. r(,) perform depth first search concurrently to find alternating paths to exposed vertices. The

concurrent depth first search proceeds in lock step. where the depth first search for l proceeds to

the next level only if its level is greater than or equal to the level of the depth first search for r().

A straightforward implementation of the concurrent depth first search in the distributed algo-

rithm would be to have III and r) synchronize across the bridge after each step of the depth first

search. The synchronization after each step. however, is very inefficient because it introduces a

large number of messages.

We reduce the number of messages by using our implementation which we call alternating

depth first search. The difference between alternating depth first search and concurrent depth first

search is that in the alternating depth first search. the algorithm first finds an alternating path from

one bridge vertex, say /,,. to an exposed vertex and then tries to find a disjoint alternating path

from r,, to an exposed vertex.

We define a complete alternating path to be an alternating path from a bridge vertex to an

exposed vertex. We define extending an alternating path to be the process of increasing the length

ol an alternating path. An alternating path may be extended until it is complete.

. '.°
. . '- -- '.



27

We now describe ho% the bridge vertices 1,, and r,, find an augmenting path containing the

bridge (1,,. r,,) using alternating depth first search Vertex 1 , begins the depth first search b choos-

ing a predecessor x, from predecessors (L). \ ertex 1,, sets d-schild (,,) . x,, and sends t

DFS (1,. r.) message to x,,. A \,ertex receiving a DFS (1,. r,) message knows the depth first search

is for 1, and r,, is 1,,'s buddy

When x. receives the DFS (1,, r) message. x, determines whether it can be added to the

alternating path. First x, checks erased (x, ) to determine if it is erased. If ., is not erased, then

it checks visited (x,, ) to determine if it has been visited by some other bridge vertex. We consider

- the following cases:

Case 1: If x,, is erased, then x, sends an ERASED message to 14,.

Case 2: If x,, is not erased and has not been visited, then x,, can be added to the alternating path.

To add x, to the alternating path. x., sets visited (x,,) "= 1(. the bridge vertex initiating the depth

first search, and dfsparent (x,,) := 1,. Then x,, tries to extend the alternating path by sending a

DFS (1,,. r,,) message to a predecessor x,, -.

This process is repeated n - I more times adding the vertices x, -1. x., x. x to the alter-
4'.

nating path until the depth first search reaches an exposed vertex x,. After x,, is added to the

* alternating path. x,, knows that the alternating path is complete. Thus x,, sets altpath (x,) := true

since .#, is a vertex of a complete alternating path and sends a SUCC!SS message to dfsparent (x,,).

x 1. The SUCCESS message signals that the depth first search has found a complete alternating

path.

When vertex x I receives the SUCCESS message. x i knows that it is a vertex of a complete

alternating path. Thus x sets altpath (x ):= true and sends a SUCCESS message to

dfsparent (x 1). This process is repeated until x,, sends a SUCCESS message to ,,.

When 1,, receives the SUCCESS message. i,, sets altpath (I,,) := true. Vertex !,, then signals

buddy r., to proceed with depth first -:earch !y sending a (;() (1,,) mnessage 'o r,.. \ertex -., then

ft. perform., depth fir.1t searLh and tries to lind .a omplete alternating path. It durinv, ihe doeth tir,t

... . . . - - f. f .- -- . . ft - ]

• .° • .. * * * f. t -° ° f -. • . . . ,. . . . . o - -- o • t t



28 a.

search a vertex x, with visited (x,) = , receives a DFS (r,,. 1l) message. then x, knows that it is a

common vertex Iound by the depth first searches of 1,, and r,,. We discuss common vertices in Sec-

tion 3.8.

Case 3: It x, is not erased but was visited by some other bridge vertex, then x,, is a vertex of a

previously discovered complete alternating path and can be added to the current alternating path.

A previously discovered complete alternating path exists if when the algorithm was searching for

an augmenting path containing another bridge, the algorithm found only one complete alternating

path from the bridge. If both bridge vertices were able to find disjoint complete alternating paths.

then there would be an augmenting path and x, would be erased. If there was no alternating path

from x, to an exposed vertex, then again x,, would have been erased. Thus x, must be a vertex of

a previously discovered complete alternating path. lowever. the alternating path containing x,,

may no longer be complete because another augmenting path may have subsequently passed

through it. Thus some of the vertices may be erased. N

To add x,, to the alternating path. x., sets visited (x,,) = 1,, and dfsparent (x,,) = 1,). Vertex

x,, sets altpath (x,,) false because x,, does not know whether the alternating path to the exposed

vertex is still complete. Then x,, sends a )FS (1,. r,,) message to dfschild (x,, ). vertex Y, ,-. the

child of x., in the previous alternating path.
' a a

If the previous alternating path x,, .Y,, . ,, is still complete. then the depth first search .

reaches the exposed vertex ,. using the minimum number of messages. The intermediate \ertice.'

y, set visited (y,) 1,, and altpath (v) false. When .,, receives the ItS (l". r,,) message. v,.

sets \isited (v,) :,. altpath (y,,) true, anti sends a SL((ISS message to dlsparent (.,). Inter-

mediate vertices Y, receiving a SUCCESS message set altpath (v, ):= true and tor% ard a SL (t.SS

message to dfsparent (v,). When x,, receives a SU('(TI-.SS message from v, _.. x,, sets altpath (x,) '.

true and sends a Sli("CISS message to I,,.

II the search alon the pre. iOuslk Lmrlele illernatlin, path finds ,i eriex fhit ; eraed ',hen i
The depth hir,,t searc.h ,ends a )- S 1 1 mes, toe ll some , ther pretee-,,r anti I li el ,1 Ii 1

U.

. -. ,... -. -.. - ., - .... ". .'.''-... .. '.-.--a .."i .?...'.?,2....,'...



29

search proceeds as if the previously discovered complete alternating path did not exist.

d We have described the depth first search for x,, . We now digress briefly and describe the

depth first search for a general vertex w,. Suppose w, receives a DFS (a . b ) message from w, +.

If w, is erased. then w, sends an ERASED message to w, +. If w, can be added to the alternat-

ing path. w, sets dfsparent (w,) w, j and visited (w,) -a

If w, is exposed. then w, sets altpath (w,)= true and sends a SUCCESS message to

dfsparent (w, ). Otherwise. w, tries to extend the alternating path. If w, is a vertex of a previ-

ouslv discovered complete alternating path. then w, sends a DFS (a. b ) message to dfschild (w,).

* If w, has not been visited, then w, selects a predecessor w, -1 from predecessors (w,). sets

dfschild (w, - w,-n. and sends a DFS (a. b ) message to w,-,.

* ,*If w, receives an ERASED mr-sage from dfschild (w,). then w, deletes dfschild (w, ) from

predecessors (w, ) and sends a DFS (a . b ) message to some other predecessor of w,. If w, receives a

SUCCES.S message from some predecessor of w, then w, sets altpath (wi) := true and sends a SUC-

CESS message to dfsparent (w, ). If all predecessors of w, return ERASED messages. then w, sets

*i erased (w,) true and sends an ERASED message to dfsparent (w,).

We now return to the alternating depth first search with the bridge vertices , and r,. Vertex
-J

1(, sends DES (1,,. r,,) messages to its predecessors one a time until some predecessor of 1,, returns a

SUCCESS message or all predecessors of 1,, return ERASED messages.

If all of 1.'s predecessors return ERASEI) messages. then there is no augmenting path contain-

ing ,. Thus I., sets erased (,,) := true and sends a N()TALGMLNTEI) message to stparent (1,).

If vertex 1,, receives a SUCCESS message. then there is an alternating path from 1,, to an

exposed vertex. Vertex 1, then sends a GO (,,) message to r,.

If r, is erased. then r,, sends an ERASED message to 1,. Otherwise. r., tries to find an alter-

nating path to an exposed vertex. The depth fir. t seaich Hor r., s the same as lr 1-.

or's

* 9%



- -l! - t - "- "~ X ' *.. '; ,' *. -- ' +- .";'

30

If ro finds a complete alternating path. then r o sends a SUCCESS message to 1. AFter 1,, and

r,, increase the matching along the augmenting path. 1, sends an AUGMENTED message to

stparent (1). ,

If r,, is unable to find an alternating path to an exposed vertex, then there is no augmenting

path containing r,. Vertex ro sets erased (r,,) := true and sends an ERASED message to 1.

If 1,, receives an ERASED message from r0 . then 1, deletes r,, from bridges (I) and selects

some other buddy r from bridges (1(,). If all buddies of 1, return ERASED messages. then there is

no augmenting path containing 10. In that case. 1, sets erased (1() := true and sends a NOTAUG-

.MENTED message to stparent ( ,,).

We give a short example for finding an augmenting path. In Figure 6. suppose we are search-

ing for an augmenting path containing the bridge (A. D) and A is ready to begin alternating depth J.

first search. A sends a DFS (A. D) message to B. and then B sends a DFS (A. D) message to C. Since

C is exposed. C sends a SUCCESS message to B. and then B sends a SUCCESS message to A. Then A

B F H

-|

Figure 6. Finding an Augmenting Path

J* -.
'a ,



i17k
31

-. sends a GO (A) message to D. D sends a DFS (D. A) message to E and then E sends a DFS (D. A)A

R message to F. Since F is exposed. F sends a SUCCESS message to E. When D receives a SUCCESS

message from E. D sends a SUCCESS message to A. Thus A and D find an augmenting path. As A

and D increase the matching along the augmenting path (C. B. A. D, E. F). vertices A,.B. C. D. E.

and F are erased. Thus when G tries to find an augmenting path for the bridge (G. D) and sends a

* GO ((3) message to D. D sends an ERASED message to G.

3.8 Common Vertices and Backtracking

A common vertex is a vertex discovered by both vertices of a bridge during alternating depth

first search. Suppose that we are trying to find an augmenting path containing the bridge (I1. r ) and

L4 that I finds an alternating path to an exposed vertex. If the depth first search for r encounters a

vertex c with visited (c I , I then c is a common vertex of I and r. The deepest common vertex

(DCV) is the common vertex with the smallest level found so far by both I and r during alternat-

ing depth first search.

We define backtracking to be the process of the depth first search trying to find a different

alternating path to an exposed vertex. To avoid redundant backtracking over edges that have

* already been searched. ezch vertex v maintains a variable barrier (v ) used to keep track of how far

the search has progressed. Backtracking is not allowed to back up beyond a vertex that has already

been searched.

We now describe the alternating depth first search with common vertices. Figure 7 illustrates

the relationship between the vertices in our discussion of the alternating depth first search. The

dashed lines represent omitted vertices.

After 1 finds a complete alternating path. I sets barrier (I) I since the depth first search for

Ishould not backtrack beyond 1 .Vertex I sets harrier (1 ) only if I finds a complete alternating

path. Otherwise. I would lie erased. Then I sends a (;() (I ) miessage to r .When r recei\ eCs the

(10 (1 )message. r sets barrier (r) rand begins depth first search.

p%



32

Ir

d, c

I !I "

Figure 7. Illustration for Alternating Depth First Search

-P.

A vertex c realizes it is a common vertex of 1 and r if c receives a DFS (r. I) message and

visited (c I . Since I was the first bridge vertex to find c the depth first search for r backtracks

first. Suppose the DMS (7-r I ) message sent to c came from vertex b,. Then c causes the depth first

search for r to backtrack by sending a BACKT'RACK (c ,r ) message to b,.-

When b,, receives the BACKTRACK (c. r ) messa&g from c . b,, knows that c is the next ver-

tex on the path from b,, to the DCV and sets dcvchild (b,,) :=c. Vertex b, tries to find another

. * €

at erntg p ati e by sn ig omnvre fl n crcie a DFS (r, ) message atd soepeecso ,ol,-on xss

I'tee () n altenatn path frto anridged ertexid thgei depthofirt ferco r bactrck .l" "

U.

1ten there ispan aumetig th . n e

%%



33

J.
If d., is unable to find a complete alternating path. then d(o is erased and sends an ERASED

message to b. If all other predecessors of b,, return ERASED messages, then b, sends a

BACKTRACK (c . r ) message to dfsparent (b). Vertex b,0 is not erased since it has an alternating

path to an exposed vertex through the DCV.

This process continues up the alternating path of the depth first search for r until either a

vertex of the alternating path finds a complete alternating path and thus an augmenting path. or r

receives a BACKTRACK (c. r ) message.

If r receives a BACKTRACK (c . r ) message and is able to find a complete alternating path

"-" through another predecessor. then there is an augmenting path. Otherwise, since barrier (r) = r .r

does not backtrack any further. Vertex r must then claim the DCV and force I to backtrack. In

addition, by claiming the DCV. r indirectly claims the alternating path leading from the DCV to

the exposed vertex via the dfschild variables.

To claim the DCV. r sends a TAKINGDCV (r) message to I to inform I that r is claiming

the DCV. When I receives the TAKINGDCV (r ) message. I knows that it can receive BACK-

-SS TRACK and SUCCESS messages from its predecessors as a result of backtracking. Then r sends a

CLAI.MDCV (r. c ) message which is forwarded along the alternating path via the dcvchild vari-

ables until it reaches c. When c receives the CLAIMDCV (r. c) message from b,). c sets

.4 visited (c) r and barrier (c) r since the depth first search by r should not backtrack beyond
'4.

c. Vertex c sends a BACKTRACK (c. I) message to dfsparent (c). vertex b . and then sets

. dfsparent (c) b,

After receiving the BACKTRACK (c. I) message. b sends a I)FS ( . r) message to some

predecessor d 1. if one exists. The process for d I is the same as for d. The backtracking process

repeats up the alternating path of the depth first search for 1 until either some vertex of the alter-

nating path finds a complete alternating path. or I receives a BACKTRACK (c . 1) message.

If some ,ertex of the alternating path is able to reach an exposed vertex. then 'reer. es a

SL(('I.SS message. Alter I receives the SLC('.SS messace. I kno, s that hacktrackin, ,'*

S2. .



34

successful and that there is an augmenting path.

If none of I 's other predecessors is able to find another alternating path to an exposed vertex.

then 1 must claim the DCV and force the depth first search for r to backtrack. Thus I sends a

CI.AI.MDCV (. c ) message to dcvchild l).

The intermediate vertices forward the CLAIMDCV (1 . c ) message until it reaches c. When c

receives the CLAIMDCV (I, c ) message. c realizes that 1 is forcing r to backtrack. But since bar-

rier (c) r, the depth first search for r cannot backtrack beyond c. Thus c knows that there is

no augmenting path containing the bridge (l. r ). In fact. the alternating depth first search from I

and r has discovered a blossom with base c. We discuss blossoms in Section 3.10.

While backtracking, it is possible that the depth first search for I may find another common

vertex c I at a level lower than the level of the DCV claimed bv r. This situation is recognized by

c 1 if cI receives a DFS ( , r) message and visited (c)= 1. This is because the only way I could

visit c I again is if the depth first search of 1 was forced to backtrack and found another alternating

path to c 1. Thus c I forces the depth first search for l to backtrack.

If I is unable to find a different alternating path to an exposed vertex, then I sends a

CLAIMDCV (1. c 1 ) message to claim c 1. Vertex I does not need to send a TAKINGDCV message

to r since r already knows there is a common vertex. When c I receives the CI.AI.IDCV (U . c 1)

message, cI sets barrier (c 1) := I and forces the depth first search for r to backtrack.

If the depth first search for r cannot find another complete alternating path. then the depth

first search for r will backtrack to c . Since barrier (c) = r . the depth first search for r does not

backtrack further. Vertex c must claim c 1. Thus c sends a CLAI.I1XV (r . c 1) message which 0'

forwarded to c 1. When c I receives the CLAIMDCV (r. c 1) message and finds barrier (c i) = 1, c I

knows there is a blossom with base c 1. The original exposed vertex found by I may he alternately

claimed by 1 and - several times. I

\Ve now ,re an example to demonstrate alternating depth first search k ith ctmmkn .ertike-'.

Suppo e we have the graph shorn in Figure h and the aloorithm is searchin,, or an .iuL men1n4

*°° .o *° . •-o-.........- . ...... .. .. ~S . s -



35

-ah

path from the bridge (A. B).

Suppose A goes first and finds the complete alternating path (A. D. F, H. J, K. Nl. P). Thus

vertices A, D. F, H. J. K. NI, and P all have their visited variables set to A. Vertex A sets barrier

(A) A and sends a GO (A) message to B signaling B to proceed.

"a-

K L

00

g -
a'.-

°-'4

Figure g. Common \Vertices and IBacktracking

.,. ,.-... .,.-.... -a,..-.., -:. .4. .-..;.-..... .. . .4,... ,. 4 ...-. ......... ,.. . ...... ... . ...



3

36

When B receives the GO message. B sets barrier (B) B. B sends a DFS (B. A) message to D.

D discovers that it is a common vertex of A and B since D has already been visited by A. Thus D

sends a BACKTRACK (B. D) message to B. When B receives the BACKTRACK (B. D) message

from D. B sets dcvchild (B) := D. since D is the next vertex along the path leading to the DCV.

Since B has no other predecessors. B must claim the DCV D. Thus B sends a TAKINGDCV (B) mes-

sage to A notifying A that B is claiming the DCV. Then B sends a CLAIMDCV (B. D) message to D

to claim the DCV.

When D receives the CLAIMDCV (B. D) message. D sets barrier (D) B. and visited (D):= B.

After D sends a BACKTRACK (A. D) message to A. D sets dfsparent (D) B.

When A receives the BACKTRACK (A. D) message. A sets dcvchild (A) := D and sends a DFS

(A. B) message to predecessor C. The depth first search for A progresses to vertices E. G. and I.

When K receives a DFS (A. B) message from I. K knows it is a common vertex since K has already

been visited by A.

K sends a BACKTRACK (A. K) message to I. I sets dcvchild (I) := K and sends a BACK-

TRACK (A. K) message to G since I does not have any other predecessors. Eventually A receives a

BACKTRACK (A. K) message from C. Since A has no other predecessors. A sends a CLAIMDCV

(A. K) message to K which is forwarded by the intermediate vertices using their dcvchild variables

until it reaches K. A does not send a TAKINGDCV message to B since B already knows there is a *'

common vertex.

When K receives the CLAIMDCV (A. K) message. K sets visited (K) A and barrier (K)

A. After K sends a BACKTRACK (B. K) message to J. K sets dfsparent (K) 1.

When J receives the BACKTRACK (B, K) message. J sets dcvchild (J) := K. and sends a DFS

(B. A) message to predecessor L. The depth first search for B progresses to N. When P receives a

DFS (B. A) message from N. P knows that it is a common vertex because it has already been visited

by A. Thus ) sends a BA(KTRACK (13. P) message message to N. The depth first search back-

tracks until it reaches I). Since barrier ()) 13. further backtracking for B is prohibited. Since

i

,, ,- ,-, ., -. ,,. -. ,, ,- ,- .-. .-... : .. • .. . ., ,, ... - .- ... .- .. . .. ., - . .. . .. .- .. ... .- . . . . . . .-. ..... .,2. ... .- , .-- .- :.



37

there are no other predecessors of D. D sends a CLAIMDCV (B. P) message to P. When P receives

the CLAIMDCV (B. P) message. P sets visited (P) B and barrier (P) := B. After P sends a BACK-

TRACK (A. P) message to M. P sets dfsparent (P) N.

When NI receives the BACKTRACK (A. P) message from P. M sets dcvchild (NI) :- P and

A sends a DFS (A. [) message to predecessor 0. Since 0 is exposed. 0 sends a SUCCESS message to M

which is eventually forwarded to A. When A receives the SUCCESS message. A knows there is an

augmenting path.

If vertex 0 did not exist. then K would have received a BACKTRACK (A. P) message. Since

- K has barrier (K) = A. K sends a CLAIMIDCV (A. P) message to NI. which is forwarded to P. When

P receives the CLAIMDCV (A. '0) message and finds barrier (P) = B. then P knows there is a blos-

som with base P.

3.9 Increasing the Matching

If an augmenting path is discovered, the algorithm obtains a new matching of greater cardi-

nalitv by reversing the matching of the edges of the augmenting path. Since the number of free

edges in an augmenting path is one more than the number of matcned edges. the cardinalitv of the

new matching increases by 1.

• "Suppose the bridge vertices of a bridge (I . r ) have found disjoint alternating paths to exposed

vertices. We describe how I anti r reverse the matching of the edges of the augmenting path.

LA After 1 receives a SUCC!ESS message from r . 1ends a S.ARTINVFRT message to

dfschild (I ) that is forwarded along the alternating path until it reaches the exposed vertex

Intermediate vertices x, forx.ard the STARTINVRT message to dfschild (x, ). When : receives

the STARTINVERT message. :, knows that it is a vertex of an augmenting path. Thus :- sets

erased true. Then : must re\erse the matching of its edge in the augmenting path. Since:

is exposed. the edge het\xeen : ri dlsrarent (:) is free. To re-erse the matching of the edge.

* *.. sets mate (:=dl snarent : ,. Then : \ends an FAI)l\\IRT message to dfsparent (: ).

.. .



38

An intermediate vertex x, receiving an ENDINVERT message from dfschild (x,) sets

erased (x,) true. To reverse the matching of its edges in the augmenting path. if x, is currently

matched with its DFS-child. then xj matches itself with its DFS-parent. and vice versa. Thus if

mate (x,) = dfschild (x, ). then x, sets mate (xi) dfsparent (x,). If mate (xi) = dfsparent (xi).

then x, sets mate (x,) :- dfschild (xi ). Then x, sends an ENDINVERT message to dfsparent (x i .
'.

When I receives an ENDINVERT message. I sets erased () true. Then I reverses the

matching of its edges. If mate ()= r. then I sets mate(1) dfschild (), and if mate ()= C-.

dfchild (). then I sets mate () r.

The process of increasing the matching for r along its complete alternating path is the same.

After r receives an ENDINVERT message and sets erased (r) and mate (r). r sends an ENDIN-

VERT message to 1. After I has set erased () and mate (), I sends an AUGMENTED message to

stparent ().

3.10 Blossoms

Now we consider general graphs with blossoms. We start by describing blossoms. We use the

description of Peterson (1985). A blossom exists if there is a bridge (s. t ) and vertices a such that

a is an ancestor of both s and t . and no ancestors of s and t other than a have level equal to level

(a ). Among the set of vertices a. let b be the vertex whose level is maximum. Then the blossom

B is the set of vertices d such that:

I (1) d does not belong to any other blossom when B is formed.

(2) b is an ancestor of d . and

(3) either d = or d = t or d is an ancestor of s or of t.

Vertex b is the base of blossom B. Figure 9a is a graph with the blossom (C. D. E. F. G) with base

C. An embedded blossom is a blossom whose base belongs to another blossom. A blossom may be

emhedded in more than one blossom.-I

*m %

., .,. _.. .. .......- v .... .. . .... .... . .. . ..... ......... v & .N.. . ..... .. .



1 39

F

I

'd" Hi H

S..

B K B K

A L A L

(a) (b)

Figure 9. Shrinking a Blossom

Next we describe a method of handling blossoms used by several sequential algorithms.

*Edmonds (1965) presented the idea of shrinking blossoms by replacing each blossom with a single

"supervertex". Figure 9b shows the result of replacing the blossom (C. D. E. F. G) in Figure 9a by

the supervertex M. Edmonds proved the following theorem:

Theorem 3.1: Let G be a graph with a blossom. Let G be the graph obtained from G by shrink-

*. ing the blossom. Then there is an augmenting path in (G if and only if there is an augmenting path

i (;



40
I.

Micali and Vazirani used this idea of shrinking blossoms to attain the 0( 1 E I) time for each

phase of their sequential algorithm. In their algorithm, if the depth first search for an exposed ver-

tex encounters a vertex belonging to a blossom, the search *jumps" to the base of the blossom and

continues the search. By making this jump, their algorithm avoids repeated traversals of the edges

of the blossom. If the search finds an augmenting path. the blossom is opened to obtain the com-
-p

plete augmenting path.

In a distributed system the notion of "jumping" does not apply. Since each vertex can only

communicate with its neighbors. each "jump" would require the vertices of the blossom to send a

message along the blossom until it reached the base. Thus shrinking blossoms would not

significantly reduce the number of messages.

We now describe the execution of our algorithm in graphs with blossoms. Since the steps of

the algorithm have been described in detail in the previous sections. we give a higher level descrip-

tion.

The main difference between searching for augmenting paths in graphs with blossoms and

graphs without blossoms is the presence of anomalies. In a graph where there are blossoms, the

edge between a vertex g and an anomaly f is a bridge. Thus the presence of anomalies may lead
-.5

to the discovery of additional augmenting paths. In a graph without blossoms, the edge between g

and f is not a bridge.

We return to the execution of the algorithm in Section 3.8. The alternating depth first search

for an augmenting path containing bridge (U. r) discovers a common vertex c. If c receives a

CI-AIMDCV (. c ) message from b I and barrier (c) -r. then c knows there is a blossom with

base c. To notify I and r that there is a blossom. c sends a BLOS (. c) message to bI which is

forwarded to I and a BLOS (r. c ) message which is forwarded to r. Vertices I and r realize there -

is a blossom with base c when the, receive the BLOS messages.

let B be the blossom with base c and let t he the tenacity (I. r . Then for each vertex b in

1B except the base c the algorithm sets blossom (b )=c and the otherlevel of b to t - le\.el (b

%..

-s--



41

We call this process labeling the blossom.

We point out a special characteristic of vertices belonging to a blossom. Each vertex b belong-

ing to a blossom has two alternating paths to an exposed vertex. One path is the "direct" path and
4 the other goes "around" the blossom- One path has even length and the other odd length. One path

begins with a free edge and the other begins with a matched edge. Thus each vertex b of the blos-

som has an alternating path to an exposed vertex through both dfsparent (v) and dfschild (v).

except the bridge vertices which have the their buddy instead of dfsparent (v). Thus. for each ver-

tex b in the blossom, the algorithm sets altpath (b) true.

To label the blossom B. I and r compute t. Note that since level () = level (r). I and r can

compute t independently. We describe how I labels the vertices b between I and c. Vertex I sets

blossom () c and altpath () true. Then I sends a BLOSSOM (1. c, t ) message to

dcvchild (), a vertex b. Vertices b receiving a BLOSSOM (1. c . t) message that do not already

belong to a blossom set blossom (b) := c. the otherlevel of b to t - level (b). and altpath (b) =

true. Then b forwards the BLOSSOM (U. c. t ) message to dcvchild (b).

The BLOSSOM (1. c. t ) message is forwarded until it reaches c. If a vertex d receiving a

BLOSSOM (1. c. t ) belongs to an embedded blossom, then d just forwards the BLOSSOM message

to dcvchid (d

When c receives the BLOSSOM (. c. t ) message from b 1 . c sends a BLOSSOMREPLY ()

message to b 1. Vertex c already has altpath (c) = true. The BI.OSSOMREPI.Y message is for-

warded via dfsparent to 1.

r The process of labeling the blossom for r is the same. Aftter r receives a

BLOSSO.IREPLY (r) message, r sends a LABELED message to I. After I has received a

BLOSSOMREPLY (1) message and a LABELED message from r. I knows the blossom is labeled.

Figure 10 shows a blossom that has been labeled.

Since a blossom has been discovered. there is no augmenting path containing bridge (I . r .

". ,'J" Vertex 1 checks bridges (I to determine it I tound any other bride-. If net. then / 'ends a

V

$:

= ..



42

IH
4,'.

a..

[] J
4.5o 4. 4oo

..

SB K
.4o0,1 00.1

0.0o 0,o0

Figure 10. A Labeled Blossom

NOTALGMENTED message to stparent (). Note that I is not erased since I has a complete alter-

nating path.

If I found another bridge with a vertex s . then I sends a GO ( ) message to s . If s is able to

find a disjoint alternating path to an exposed vertex, then there is an augmenting path. Then I and %J

s increase the matching along the augmenting path. and 1 sends an AUGMENTED message to

'.5 stparent ().

If the depth tirst earch for N finds a vertex b of the blossom B f ound hv 1 and r, then ',-n~e

altpath (b) = true. the depth first search follo'xs the complete alternating path to an esoted

'&
5 , - a " , , , o . . - - o . - , - , - - - o - . ' % % ' . o . - % "

o. " .5 . _. % - - , -. o -. . ." ' °, ' ~t ° p d 0_ ' 
r

, a dl- € P "' " * " t "¢ t
f m[ /• i 

I
i .t Il ¢ (i(m #iI • , t -

•
l I •' a • I - 1 - ' 1 5

- i 
1

- 5 | - I'- - m



- 1 -7 R. X- 07 V7 'k

43

vertex. Thus s receives a SUCCESS message and s sends a SUCCESS message to 1. To determine

whether the alternating path found by s has any common vertices with the complete alternating

path for I. vertex I searches its complete alternating path again. We accomplish this by modifying

the DFS message to signify that it is re-searching a path. If the paths are disjoint, then there is an

augmenting path. If there is a common vertex, then the alternating depth first search for I and s is

the same as in the case with common vertices. If s and I find another blossom, then s and I label

* .the blossom with the base. Note that it is possible that the blossom found by I and r has the same

base as the blossom found by 1 and s. Then the vertices of both blossoms would have blossom 0

set to c

If the depth first search to find an exposed vertex for some other bridge found at the current

search level or at a higher search level finds a vertex belonging to a blossom, then the search

S .proceeds in the same way as in the case of finding a previous complete alternating path.

When the algorithm has completed the search for augmenting paths at the current search

level, if the leader received an AUGMENTED message. then the leader begins a new phase. and the

* discovery of blossoms at the current search level has no effect. If no augmenting paths were found.

then the leader continues the breadth first search by incrementing the search level i := i + I and

broadcasting a STARTBFS (i ) message.

As the leader increases the search level, we want the breadth first search for bridges to wrap

around blossoms. If the search discovers a bridge such that both vertices of the bridge belong to

S,.e the same blossom B. then we ignore the bridge because a search for an augmenting path would lead

to the rediscovery of B. Thus. we modify the BRIDGESEARCIt message to tell whether a vertex x

belongs to a blossom. If x belongs to a blossom, then the BRIDGESEARCII message includes the

. base of this blossom.

To allow the search for bridges to wrap around blossoms, we modify the breadth first search

S so that xhen the lea(ler broackasts a STA R'rB3[S (i ) message. \ertices v ma% send BRII)(;t"SI.A RCIi

S.- rness.ages it either e~enleel (v)i or oddle\el(' )v . Vertices v* send HRII)(;t.SElAR('iI mes-



44

sages to vertices a in anomalies (v) and those vertices u along alternating paths in

activeneighbors (6) - predecessors (v) to which v has not sent BRIDGESEARCH messages previ-

ouslv.

If v has an anomaly a. then the edge (v . a ) is a bridge, and v convergecasts a BRIDGES mes-

sage. If v receives a BRIDGEREPLY (b. bridge) message from a vertex u, then the edge (v, b ) is a

bridge, and v convergecasts a BRIDGES message. Otherwise. v convergecasts a NOBRIDGES mes-

sage. As the search level is increased, the breadth first search follows a path leading out of the

blossom, if one exists.

If a bridge is discovered, the search for augmenting paths is basically the same as before. The

only difference is that during the depth first search to find an alternating path to an exposed vertex.

the vertices in a blossom need to consider two kinds of predecessors. those joined by a free edge and

those joined by a matched edge. Thus, if a vertex b belonging to blossom is searching for an

exposed vertex or backtracking, b needs to select a predecessor of the correct kind. But this is sim-

ple since b knows the matching of the edge on which the last DFS or BACKTRACK message
dV

arrived. Thus, if the last DFS message arrived on a matched edge. then b sends a DFS message to a

predecessor joined by a free edge. and vice versa. If the last BACKTRACK message arrived on a

free edge. then b selects another predecessor joined by a free edge since b tries to extend the alter-

nating path. Note that each vertex has at most one matched predecessor.

The process of increasing the matching along the augmenting path is the same as before. The

STARTINVERT and ENDINVERT messages are sent via the dfschild and dfsparent variables. .,

We give a brief example describing how the algorithm finds augmenting paths in graphs with

blossoms. Figure 11 is a graph with an embedded blossom. The current matching is the matching

shown.

The search for bridges begins from the exposed vertices A and T. When the search level is 4.

vertex () discovers anomaly P since P sends a HRID(SEARCII message to 0. Thus () knows the

edge (). P) is a bridge if () belongs to a blossom. IHowever. at this time. () does not know '. hether

-1 Al4.>.. . . . . .%~** 4,' ' **~*-.4 ..- '. . .



'.1iw w rix y 'N70 V IY'JWT .M '11. J -1 711 K 1, -)~ , -, . . 7- ~ .~ .

[I 45

ii-

L-- .......... K

H IL

F G M

E N P

D 0 Q

C R

B S

A T

Figure 11. An Embedded Blossom

it belongs to a blossom. Since there is no augmenting path. the search for bridges continues.

When the search level reaches 6. It and I discover the bridge (11. u). The search for an aug-

menting path t mom I I and I leads to the discovery of- the blossom (1-. F. G. 11. 1). Thus F, G. H. and

d I are labeled with base F. Since there is no augmenting path. the breadth first search continues. At

- - S

|,S - 5,.-- . . 4 .* £ f-K tK. 1



46

search level 7, the bridge (J. K) is discovered. The search for an augmenting path leads to the

discovery of the blossom (C. D, E. G. 1, J. K. L. NL. N. 0). The vertices of this blossom are labeled

with base C. except G and I which were already labeled with base E. Note that blossom (E) = C.

Since there again is no augmenting path. the breadth first search continues and wraps around

the blossom. When the search level reaches 12, vertex 0 convergecasts a BRIDGES message since 0

has the anomaly P. The search for an augmenting path begins with vertex 0. By performing depth

first search. 0 finds the complete alternating path (0. N. Mt. L. K. J. 1, G. E. D. C. B. A). Then P

finds the complete alternating path (P. Q. R, S. T). Then 0 and P proceed to increase the matching

along the augmenting path (A. B. C. D. E. G, 1. J. K. L. NI. N. 0. P. Q. R. S. T).

-e-e7S



47

IN

CHAPTER 4

OANALYSIS

4.1 Correctness

We show informally that the algorithm is correct. At the start of a phase, if the current

matching M is maximum, then by Berge's Theorem there is no augmenting path. Thus the breadth

- first search for bridges in the phase reaches a level i such that no vertex v has either

evenlevel () - i or oddlevel (v) = i , and the algorithm halts.

If the current matching M is not maximum, then by Berge's Theorem there is an augmenting

* .path P with respect to M. Since the search for bridges continues until it reaches a level i where an

augmenting path is found. the algorithm finds an augmenting path and increases the matching.

Since the search for bridges at level i finds all the bridges at level i . and the algorithm tries to find

*, augmenting paths containing every bridge, the algorithm finds a maximal set of equal length aug-

menting paths. Since the algorithm begins a new phase if it finds an augmenting path at the current

" 'search level, the augmenting paths it finds during each phase must be a maximal set of minimum

length augmenting paths.

4.2 Message Complexity

We determine the message complexity of our distributed matching algorithm.

Theorem 4.1:- The message complexity of our distributed algorithm in the worst case is 0( 1 V I S2)

messages.

We prove Theorem 4.1 by adding up the total number of messages in the worst case. We first

determine the number of messages required during preprocessing to construct a spanning tree and

to select the root to be the leader. If we use the distributed algorithm of Gallagher. llumblet, and

.Spira (193) I-or minimum weight spanning trees, then the number of messages is,

I( V log I V I L'). If we use the distributed algorithm of Awerbuch (1985b) for depth first
.4 '

.4

. . . . . -. . .-. . . -. .. -. . -.. . . , • .. ". -. , ." - -" ."-_. .-.-. '....'.'. -. '.-- "' ;, - .- " ,-.



I...4

48

search spanning trees, then the number of messages is O( E I).

Now we determine the number of messages required to compute a maximum matching using

our algorithm given that the spanning tree has been constructed. During each phase. the algorithm

finds a maximal set of minimum length augmenting paths. Hopcroft and Karp (1973) proved that

no more than 0( 1 V 1/2) such phases are needed to find a maximum matching. During each phase.

the number of search levels is no more than I V I. Thus the total number of search levels required

by the algorithm is 0( VI 13/2).

At the start of each phase. the leader broadcasts a STARTPIIASE message. Since vertices send

the STARTPHASE messages along the spanning tree. there are I V I STARTPHASE messages per

phase. Each vertex convergecasts a READY message to end the initialization of a phase. Since the

READY messages are also sent along the spanning tree. the number of READY messages per phase is

also I V I. Thus the number of STARTPHASE and READY messages for the algorithm is

()(1 V 312)" ,A

To conduct the search for bridges, the leader broadcasts a STARTBFS message for each search

level. Since the STARTBFS messages are sent along the spanning tree. the number of STARTBFS

messages is I V I per search level. Thus the number of STARTBFS messages for the algorithm is
-/

(( V Is"."

During a phase. each vertex sends at most one BRIDGESEARCIt message over an edge. Since

at most two BRII)GESEARCtI messages are sent over each edge. the number of' BRII)GEStARCI!

messages is 0( IE I ) per phase. Thus the number of BRII)GFSEARCIt messages for the algorithm is

-(( V 2 I E I ). Since there is one IRII)GWI-'REPLY message for each BRIDGESEARCII message. the

number of BRII)GEREPLY messages for the algorithm is also 0( V I 1/2 I- I).

To report to the leader whether any bridges were discovered at each search level, each vertex

sends either a BRID(;ES or NOBRIDGES message to its sT-parent. Since each vertex sends only one

of these messages at each search le',el. the numher of 13Rll)(;DlS nd N()BRII)GS messaces for ea ch

.search level is V I. Thus the number of BRII)(;lS and N(B)RII)(;S messages for the aioorithm is

°% .* .° . . . . .° ° • o-%



49

OC I V 1112).

At each search level, each vertex sends at most one STARTAUGMENT message. Thus the

number of STARTAUGMENT messages for the algorithm is 0( 1 V 15/'2). Since there is one AUG-

MENTED or NOTAUGMENTED message for each STARTAUGMENT message, the number of

AUGMENTED and NOTAUGMENTED messages for the algorithm is also 0( i V 15/2).

To compute the number of DFS messages, we consider two cases in which the algorithm sends

DFS messages.

In the first case. we consider alternating depth first search and backtracking where there are

no previously complete alternating paths. During each phase. the algorithm sends at most one DES

*' message over an edge in each direction. If a vertex v receives a DFS message from a vertex w and

there is no alternating path from v to an exposed vertex, then v sends an ERASED message to w

and w sends no more DFS messages to v. If v finds an alternating path, then by our assumption, v

must belong to an augmenting path. Thus, after the algorithm increases the matching. v and w are

erased and w does not send another DFS message to v during the phase. Since there are I E I edges.

the number of DFS during each phase for this case is ()( I E I).

In the second case, we consider the presence of previously discovered complete alternating

paths. If alternating depth first search finds an unerased vertex v with altpath (v) = true, then the

depth first search retraces edges of the alternating path. We count these additional DFS messages.

If the alternating path is still complete. then the number of additional I)FS messages is exactly the

length of the path. If the alternating path is no longer complete. then the DES messages sent in

order to find another alternating path are counted in the first case. Thus the only additional DFS

messages are those sent along previously complete alternating paths. Note that during each phase.

each vertex belonging to a previously discovered complete alternating path is visited by no more

than I V I different vertices. Since the combined lengths of the complete alternating paths during a

phase is at most I V ' and each vertex of such ,i path an he . sited no more han t 1 limes, the

number of I)FS messages in the second Lase is at mo,,t per rhase,. 'hus the total ntnjb'r o

%.4

'- - -



50

DFS messages for the algorithm is 0( I V I /"2 1E I ) + O( I V 15/2) = O( I V 15/).

A vertex sends a SUCCESS message when it discovers that it is a vertex belonging to a com-

plete alternating path. Similar to the second case with the DFS messages, a vertex v of a previ-

ously complete alternating paths may send more than one SUCCESS message if the alternating

depth first search finds another complete alternating path containing v. Thus the number of SUC-

CESS messages for the algorithm is 0( 1 V I 5/2).

During the alternating depth first search. if a vertex v receiving a DFS or BACKTRACK mes-

sage from a vertex w is unable to find an alternating path to an exposed vertex. v erases itself and

sends an ERASED message to w. The ERASED message has the effect of removing the edge (v. w)

for the remainder of the phase when performing alternating depth first search. Since there are I E I

edges, the number of ERASED messages during each phase is at most IE I. The number of

ERASED messages for the algorithm is 0( 1 V I /I I E I.

During a phase. at most one BACKTRACK message is sent over each edge since the barrier

variables prevent redundant backtracking. Thus, there are at most IE I BACKTRACK messages

per phase and 0(1 V 11/2 E I ) messages for the algorithm. I

During the search for augmenting paths. a GO message is sent from a bridge vertex to its

buddy to signal the buddy to perform depth first search. One GO message is sent for each bridge.

Since there are at most I E I bridges and each bridge is discovered at most once during each phase. .,P-

the number of GO messages is at most I E I per phase. The total number of GO messages is

0( V 1 2 I ).

Next we consider the TAKINGDCV and CLAIMDCV messages. During each phase, there is at

most one TAKINGDCV message associated with each bridge. Thus the number of TAKINGDCV

messages for the algorithm is 0( 1 V 1 1/2 1 E I).

During each phase. at most one CI.AI\.DCV message is sent over each edge. This is ensured

by the barrier variables which keep track of the DCV. Thus the number of CLAIMDCV messages

for the algorithm is ( V 11/21rF I ),..



951

" If the alternating depth first search finds a blossom, then the common vertex that is the base

3 of the blossom sends BLOS messages which are forwarded by the intermediate vertices unti! they

reach the bridge vertices. After the bridge vertices receive the BLOS messages. they send BLOSSOM

messages to label the blossom. If there are no embedded blossoms, then each vertex of the blossom

receives at most one BLOS message and sends at most one BLOSSOM message. If there are embed-

ded blossoms, then a vertex of an embedded blossom may have to pass BLOSSOM messages for

labeling outer blossoms. During each phase. there are no more than I V I blossoms. Since each

blossom is discovered and labeled once. each vertex receives no more than I V I BLOS messages and

sends no more than I V I BLOSSOM messages. Thus the number of BLOS and BLOSSOM messages

for the algorithm is O( I V I "/-). Since there is one BLOSSOMIREPLY message for each BLOSSOM

message. the number of BLOSSOMREPLY messages for the algorithm is also 0( 1 V Is/2).

."-Each pair of bridge vertices discovering a blossom sends one LABELED message after the blos-

som is labeled. Since no more than I V I blossoms are labeled during a phase. the total number of

LABELED messages is 0( 1 V 1312).

Only the vertices that are on an augmenting path send STARTINVERT messages. Note that if

an augmenting path is found at the current search level, then the algorithm proceeds to the next

phase. Since the augmenting paths discovered during each phase are disjoint and the vertices send

STARTINVERT messages along augmenting paths. each vertex sends at most one ST-XRTINVERT

lie message. Thus. there are at most I V I STARTINVERT messages during each phase and a total of
. ( I V I 3/2) STARTINVERT messages for the algorithm. Since there is one .NDINVERT message

for each STARTINVERT message. the number of ENI)iNVERT messages for the algorithm is also

0( I V 1-/2).

To determine the message complexity of the algorithm, we add up the total number of mes-

sages. Thus the message complexity of our distributed matching algorithm is V( I ' I 12') messages.

p.'v



KT- ICT -T- %- ,,.l r

52

4.3 Time Complexity

The time complexity of our distributed matching algorithm is the same as the message corn-

plexity. The reason is because the algorithm finds augmenting paths one at a time. During each

phase. 0( I V 12) messages are needed to find a maximal set of minimum length augmenting paths.

Thus. the time complexity of the algorithm is 0( 1 V 152).

!%

-p~"

-p

a-.

I*

t .
B

eU'

* ~ \.~ **



1 53

CHAPTER 5

MAXIMUM MATCHING ON TREES

We consider the performance of our distributed algorithm on trees. Matching on trees is

much simpler since we do not need to consider blossoms or common vertices when performing

depth first search. We show that our algorithm computes a maximum matching on trees using

0( I V I ) messages.
.

Theorem 5.1: Given a tree T with root r. the distributed matching algorithm finds a maximum

matching of T in one phase.

Before proving Theorem 5.1. we first present a sequential matching algorithm. Let T(x ) be

the subtree of T rooted at x. Consider the following sequential algorithm called TREEMATCH.

. which takes one vertex x as input. Order the children Y . Y2. " y, of x from left to right.

TREEMATCH is called recursively on each child of x. We show that after the execution of

S TREEMATCH (x). T(x) has a maximum matching. It follows that TREEMATCH (r) finds a

maximum matching in T.

TREEMATCH (x)

if x is a leaf then
return

for i = Ito n
call TREEMATCIt (Y,)

' if all children yj of x are matched then

leave x exposed
else

match x with the leftmost child y, that is exposed
end

Suppose TREEMATCH (y,) has been executed. Let T(y, ) be the subtree of T rooted at y,

with a maximum matching. Suppose e is an exposed vertex distinct from y, in T(y). Let 1 be

e s parent. Thus I is either y, or a descendant of y..

'p.,



54

Lemma 1: There is some child d of f matched with /.

Proof: Since TREEMATCII (y,) has been executed. TREEMATCII must also have been executed on

all descendants of y, and in particular on . Note that once a vertex is matched. it remains

matched during the rest of the algorithm. Consequently. since e is exposed after the execution of

TREEMATCH (y,). e must have been exposed before the execution of TREEMATCH (f ). Now

consider the invocation of TREEMATCH (f ). After TREEMATCH is called on each of f 's chil-

dren. the algorithm matches f with a child of f because at least one of f *s children is exposed.

Since e is exposed before the call TREEMATCH (f ) and e remains exposed after the call. f must

have been matched with a child d of . 0

Theorem 5.2: After the execution of TREEMATCH (x ), T (x) has a maximum matching.

Proof: We show by induction on the height of T(x ) that TREEMATCH finds a maximum match-

ing. In the base case. x is a leaf. T(x ) is comprised of vertex x and no edges. For a graph of one

vertex, the empty matching is maximum. Now assume the algorithm computes a maximum match-

ing on subtrees with height less than the height of T(x).

To prove T(x ) has a maximum matching, we show that T(x ) has no augmenting paths.

Assume to the contrary that after the execution of TREEMATCH (x) there is an augmenting path

P in T(x ). By the inductive hypothesis. P cannot be contained entirely within a subtree rooted at

a descendant of x since any subtree of lesser height has a maximum matching. Thus P must con-

tain vertex x. In addition. P must contain at least one exposed vertex e in T(x ) other than x.

We claim that at least one of the two exposed vertices of P is a descendant of a child Y, of x.

Ve consider two cases.
-i

Case 1: If x is exposed. then all children of x are matched. Hence the other exposed vertex e of P

must be a descendant of some child y, of x.

Case 2: If x is matched, then P must contain x and the child y, matched with x. Thus at least

one exposed vertex e of I' must he a descendant of some NL

. . . . . . . oX N, %



55

Since P is an augmenting path. there must be an alternating path leading from x to e. Let f

be the parent of e and let g be the parent of . Vertex g exists since e is a descendant of a child

of x. Note that g may be x. The edge (g. f ) is free since by Lemma I f is matched with some

child of f . The edge (f . e) is also free since e is exposed. Thus the path from x to e contains

two consecutive free edges and is not an alternating path. Thus P is not an augmenting path. This

is a contradiction. 0

-I Proof of Theorem 5.1: When executed on trees, the method used to find augmenting paths in the

distributed matching algorithm exhibits the same behavior as TREEMATCH. We compute a

matching in T by executing one phase of the distributed matching algorithm on T. Note that the

;.-) spanning tree for the distributed algorithm is exactly T. Since at the start of the algorithm no ver-

tices are matched, the search for bridges at level 0 finds that every edge is a bridge.

The leader sends a STARTAUGMENT message to its leftmost child. A vertex x that is not a

leaf forwards the STARTAUGMENT message to its children from left to right one at a time. Ver-

tex x is matched with the first child y, that is not matched with a child of y,.

Now we compute a matching in T using TREEMATCH as follows. We first compute the

leader of T using the preprocessing of the distributed algorithm. Then the root r of T is the leader

L in the distributed algorithm. For each vertex x in T that is not a leaf. we order the children of

x from left to right. After the execution of TREEMATCH (r). each vertex x is either matched

with a child of x. matched with the parent of x . or exposed. We examine the three cases.

Case 1: If x is matched with a child of x. then x is matched with the leftmost child y, of x that

is not matched with a child of y,. This is the same child Y, that x is matched with in the distri-

14*C- buted algorithm because we sent the STARTAUGMENT messages in leftmost depth first search

, order.

Case 2: Let w be the parent of x. If x is matched with w . then x is the leftmost child of w that

Ais not matched with a grandchild of w . Thus either x is a leaf or all of the children Y, ol x are

matched with a child of Y,. In the distributed algorithm.x is also matched ,with w becausex is

'SW



56

the leftmost child of w that is not matched with a grandchild of w.

Case 3: If x is exposed. then we consider the following subcases:

Subcase 3.1: If x is r. then all the children y, of x are matched. Thus each y, is matched with

some child of y,. In the distributed algorithm, each y, is also matched with some child of y, since

each y, searches for an augmenting path before x does.
Subcase 3.2: If x is not r then w. the parent of x. is matched with some other child of w. Thus or

x was not the leftmost exposed child of w. In the distributed algorithm. w is also matched with

some child of w other than x since x was not the leftmost exposed child of w.

Since the matching of each vertex and edge of T in the distributed algorithm and in

TREEMATCH is the same. the matchings computed by the distributed algorithm and

TREEMATCH are the same. Since the matching found by TREEMATCH is maximum, the matching

found by the distributed algorithm in one phase is also maximum. Thus the distributed algorithm

finds a maximum matching of T in one phase. 0

We now determine the message complexity. of the distributed algorithm when executed on
All

trees. Note that during the phase, the breadth first search finds all the bridges in one search level. -P

We assume that the algorithm knows a priori that the graph is a tree and halts after one phase.

Theorem 5.3: Given a tree T. the distributed matching algorithm finds a maximum matching in T

using 0( 1 V I ) messages.

Proof: We use the distributed depth first search algorithm of Awerbuch (1985b) to construct the

spanning tree and select the leader. The number of messages required for the preprocessing is

0( IE I). But since the graph is a tree. IF = I V I - 1. Thus the number of messages for the

preprocessing is 0( I V I

Now we consider the number of messages used by the algorithm. Since the algorithm finds a

maximum matching at the first search level, all augmenting paths have length 1. Thus we do not

need to worry about blossoms. common vertices, or backtracking, and can eliminate the ass"ociateti

messages.

% %



57

We briefly consider the remaining messages. The messages used for synchronizing the algo-

rithm. e.g.. STARTPIIASE. STARTBFS. BRIDGES, and STARTAUGMENT. are sent along the tree.

Thus there are O( I V I ) of these messages per phase. The messages used to search for bridges and to

* find augmenting paths. e.g.. BRIDGESEARCH. GO. and ERASED. may be sent along all edges. Thus

* there are 0( 1 E I ) = O( 1 V I ) of these messages per phase. Since by Theorem 5.1 the algorithm finds

a maximum matching in one phase. the number of messages required to compute a maximum

matching is 0( I V I ). Thus the total number of messages required by the algorithm is 0( 1 V I ). 0
I-

Suppose we have the tree shown in Figure 12a. Then the maximum matching comr'ited by

the distributed algorithm and TREEMATCII (A) is shown in Figure 12b.

47

l( a) (b)

• , Figure 12. A Maximum Matching on a Tree

%W

. -

4.



Vt . . . . . . .

58

CHAPTER 6

CONCLUSIONS

We have presented a distributed algorithm for maximum cardinality matching in general

graphs. In the worst case. our algorithm uses 0( 1 V 1 512) messages and requires 0( 1 V 113/2) time.

We also showed that our algorithm finds a maximum matching in trees using only 0( 1 V I ) mes-

sages.

We do not know if 0( 1 V 1 5/2) messages is the minimum number of messages required to corn-

pute a maximum matching in a distributed system. We could not construct a worst case example

for our algorithm that requires 0( 1 V 1 5/2) messages. In fact, it seems that the total number of

search levels required by the algorithm over all phases in the worst case is 0( 1 V I ), Thus. if there

is a more efficient method of dealing with blossoms and the above conjecture is true, then the mes-

sage complexity of our algorithm can likely be reduced.

Other problems to consider are distributed algorithms for maximum weighted matching in

both bipartite and general graphs. Galil et al. (1986) presented an 0( 1 E I I V I log I V I1) sequential

algorithm for finding a maximal weighted matching in general graphs. Galil (1986) surveyed some

parallel algorithms that have been recently developed for maximum cardinality matching and max-

imum weighted matching. We know of no distributed algorithms for maximum weighted matching

in either bipartite or general graphs.



......... [V - W -9 %X.- -a - .

i59

" REFERENCES

Awerbuch, B. (1985a). "Complexity of Network Synchronization." J. ACM, vol. 32. no. 4. pp.
804-823.

Awerbuch. B. (1985b). "A New Distributed Depth-First-Search Algorithm." In/. Proc. Let.. vol. 20.
no. 3. pp. 147-150.

VBerge. C. (1957). "Two Theorems in Graph Theory." Proc. Nat. Acad. Sci.. vol. 43. pp. 842-844.

Eckstein. D. (1977). "Parallel Processing Using Depth-First-Search and Breadth-First-Search." Ph.D.
Dissertation. Dept. of Computer Science, Univ. of Iowa. Iowa City. Iowa, 1977.

Edmonds. J. (1965). "Paths. Trees. and Flowers." Can. J. Math.. vol. 17. pp. 449-467.

Even. S. and Kariv. 0. (1975). "An O(n2 5 ) Algorithm for Maximum Matching in General Graphs."

-Proc. of the 16th Annual IEEE Sym. on Foundations of Computer Science. IEEE. pp. 100-112.

Gabow. H. (1976). "An Efficient Implementation of Edmonds' Algorithm for Maximum Matching
on Graphs." J. ACM. vol. 23, pp. 221-234.

(;afni. E.. Loui. M.. Tiwari. P.. West. D.. and Zaks. S. (1984). "Lower Bounds on Common
Knowledge in Distributed Algorithms." Technical Report R-1017 (1984). Coordinated Science

Laboratory. University of Illinois at Urbana-Champaign.

Gali. Z. (1986). "Efficient Algorithms for Finding Maximum Matching in Graphs." Comp. Surveys.
vol. 18. no. 1. pp. 23-38.

Galil. Z.. Micali. S.. and Gabow. H. (1986). "An O(EV log V) Algorithm for Finding a Maximal
'S Weighted Matching in General Graphs." SIAM J. Computing. vol. 15. no. 1. pp. 120-130.

Gallagher. R. (1982). "Distributed Minimum Hop Algorithms." Tech. Rep. LIDS-P-1175 (1982).
M.I.T., Cambridge. MA.

G(allagher. R.. Humblet. P.. and Spira, P. (1983). "A Distributed Algorithm for Minimum-Weight
* Spanning Trees." ACM Trans. on Programming Languages and Systems. vol. 5. no. 1. pp. 66-

77.

- - Hopcroft. J. E. and Karp. R. M. (1973), "An n 2 - Algorithm for Maximum Matching in Bipartite
Graphs." SIAM J. Computing, vol. 2. no. 4. pp. 225-231.

% Kameda. T. and Munro. 1. (1974). "A 0( 1 V I IE I ) Algorithm for Maximum Matching of Graphs."
Computing. vol. 12. pp. 91-98.

, _.*Micali. S. and Vazirani. V. (1980). "An 0( V , I E I) Algorithm for Finding Maximum Matching
' . in General Graphs." Proc. 21st Annual IEEE Sym. on Foundations of Computer Science. IEEE.

pp. 17-27.

j Papadimitriou. C. and Steiglitz. K. (1982). Combinatorial Optimization: .Algiiritihrn and C,,mple.x itv.
Prentice-I fall. !ngle'x ood Clifs. NJ.

"4,



V .,. ' .a,,,. . o, •, ..+ .,, ,. . .

60

Peterson. P. (1985). "The General Maximum Matching Algorithm of Micali and Vazirani." Technical
Report T-163 (1985). Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign.

Schieber. B.. and Moran. S. (1986). "Slowing Sequential Alogrithms for Obtaining Fast Distributed
and Parallel Algorithms: Maximum Matchings." Proc. of the 5th Annual ACM Sym. on Princi-
pies of Distributed Computing, pp. 282-292.

Segall. A. (1983). "Distributed Network Protocols." IEEE Trans. Inf. Theory. vol. 29, pp. 23-25.

Shiloach. Y.. and Vishkin. U. (1982). "An O(n 2 log n) Parallel MAX-FLOW Algorithm." J. Algo-
rithms. vol. 3. pp. 128-146.

p%'. _

..

i ~... !

° J

+ '.

",',', " +' ". - . -" "' . " " 2-"' ' '" """." '-""' " ".". ,+'' ' "' +,'"" "'"+",-"':."+".2. U '+ '



44

4.

/
I
I

-F-------------------.'*.~*.**d*~.* .~ ~ ~ .. *4 ~ .4


